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0. INTRODUCTION

For a natural number v and two sequences {A(k), B(k)}, of binomial coefficients, the follow-
ing convolutions of Vandermonde type,

C(m,n,v) = z A(m+kv)B(n-kv),
3

will be investigated in this paper. When v =2, 3, 4, the convolutions will be nominated duplicate,
triplicate, and quadruplicate, respectively. Thanks to the explicit solutions of the corresponding
algebraic equations, we will establish the generating functions of binomial coefficients with run-
ning indices multiplicated accordingly. Then the formal power series method will be used to
demonstrate several binomial convolution identities.

When v =1, we reproduce a pair of binomial identities and the related generating function
relations, from which our argument will be developed. In this respect, there are two general con-
volution formulas due to Hagen and Rothe (cf. [9], §5.4),

o ) o = e L o
and
éaf B (a J;ckﬂ)(yn__lzﬂ){a i ) (0.1b)

which have been recovered by Gould [7] (see also [3], [6], and §4.5 in [10]) through manipulating
the generating functions :

gafkﬂ (a;kﬁ)szna (0.22)
and
> o (a+kf) i gt
,§)a+kﬂ( k )Tk‘ﬂm_ﬂn, (0.2b)

where 7 = (57—1)/n”. More binomial convolution formulas and the related hypergeometric iden-
tities may be found in [4] and [8].

For an indeterminate x and a complex sequence {7(k)},, the generating function is defined by
the following formal power series:

f(x)= Z T(k)x*. (0.3a)
k=0
Denote by o, :exp(zi;/—?—l) the v primitive root of unity. Then there exists a well-known

formula to determine the generating function of the subsequence with running indices congruent
to t modulo v,
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L v—-1
Vz T(kv +1)xk* = Z " f(xaw"), (0.3b)
k=0 =
which will be used in this paper frequently without indication.

1. DUPLICATE CONVOLUTIONS

For f=1/2, the functional equation between two variables 7 and 7 in (0.2) becomes quad-
ratic. The substitution of its solution 7(27) = U?(z) leads the generating functions stated in
(0.2a) and (0.2b) to the following lemma.

Lemma 1.1: For two indeterminates 7 and U related by

=U—le-c>U=r+m, (1.1a)
we have functional equations
1=U(7r)xU(-7), (1.1b)
2t=U(7r)-U(-7), (1.1¢)
Wi+ =U(2)+U(-7), (1.1d)
1+U%(7) = {U(z) +U(-7)}U(7), (1.1e)
1+U?(~7) = {U(z) +U(-7)}U(-7), (1.19)
and generating functions
; L ("*" ’2)(2 o = U*(7) | (1.2a)
and 1+2a
2 (e - garocs (.29

Their combinations lead us immediately to the following proposition.

Proposition 1.2: With the complex function U defined in Lemma 1.1, we have generating func-
tions on duplicated binomial coefficients:

Uza(r)+U2"(—r)=§:0a2f ("*")(2 %, (1.3a)
Ui -U)= 3, 2tk Jasyte, (1.30)
e
I

Based on these relations, we are ready to establish binomial formulas on duplicate convolu-
tions.
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Theorem 1.3 (Duplicate convolution identities [5]):

2a-mfa+k \(c-k)_(a+c m(c—a+m
; a+k (m+2k)(n—2k)_(m+n)+(—l) ( m+n )a (143.)
2a-m( a+k \( ¢c—k \2¢c—n
; a+k (m+2k)(n—2k) c—k (1.4b)
_2a+2c-m-n(a+c m2c—2a+m-n(c—a+m
T a+c (m+n)+(_l) ERPS— ( n ) (1.4c)

Proof: By means of Lemma 1.1, manipulate generating functions

2U 14+2c¢-n (T) 3 2Ul+2a+2c—n (T) 2Ul+20—2a—-n (T)

U@+ U NG00 - U@ 000 T U@ 70D

and
2U 14+2¢-n (T) B 2U2a+20—n (T) 3 2U2+20—2a—n (T)

U - U e G~ U@ U U@ 00D

According to Proposition 1.2, the coefficients of z” and 7'*” in the formal power series expan-
sions lead us, respectively, to the following convolution formulas,

)5

k

2a—1(a+k\ c—k \_(a+c l1+c—-a
;a+k_(1+2k)(n—2k)_(l+n)_( 1+n ) (1.5b)

and

which have been discovered for the first time by Andrews-Burge (see [1], Eqs. 3.1-3.2), with the
help of hypergeometric transformations in their work on plane partition enumerations and deter-
minant evaluations.

Letting 6 =0, 1 be the Kronecker delta, we can unify both formulas as a unilateral convolu-

tion identity,
ZZa—-é' a+k \(c—k \_(a+c +(_1)5 d+c—a
~ a+k S+2k )\n-2k) \6+n S+n )

which, in turn, is expressed under parameter replacements

k—>k+p,
a—>a-p,
c>c+p,
n—>n+2p,
d—>m-2p,

as the first finite bilateral convolution formula stated in the theorem.
Again from Lemma 1.1 and Proposition 1.2, consider the generating functions
{U2a(z.) + U2a(_z.)} x U2c—n(z.) - U2a+2¢—n(1.) + U2c—2a—n(T)
and
{Ula—l ( T) _ U2a—l(_ T)} X UZ(:—n (T) — U2a+2¢—n—l ( T) _ U2c—2a—n+1 ( T) ,
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then the coefficients of z” and z'*” in the formal power series expansions result, respectively, in
the following binomial convolution identities:

2a (a+k\2c—-n(c-k
zk:a+k( 2k )c—k (n—2k) (1.63)
:2a+2c~n(a+c)+20—2a—n(c—a)’ (1.6b)

a+c h c—a n

2a-1(a+k\2c—n( c-k
Lk (1+2k)—c_k (n—2k) . (1.60)
_2a+2c-n-1({a+c)\_2c-2a-n+1(1+c-a
- a+c (1+n) l+c—a ( l+n ) (1.6d)

Their bilateralization derived exactly in the same way as in the proof of the first formula (1.4a)
leads us to the second one (1.4b-1.4c). This completes the proof of Theorem 1:3. O

As a by-product, we present a pair of convolution formulas of Jensen type. From Lemma
1.1, it is trivial to have the formal power series

1 _ 1 _1 i ¢
U@)+U(-7) 2{U(r)-7} 25 UY ()
By means of Proposition 1.2, we can establish the following expansions,

U1+2a(T) + U1+2a (___ T) y 2U1+2c(,[) B i z.kU1+2a+20—k (T) + TkU1+2a—2c+k (-—T)
U()+U(-7) U(r)+U(-1) & U(n)+U(-7)

and
U2a (T) _ U2a(_ T) y 2U1+2c<,[) 3 el TkU2a+2c—k (,[) _ TkU2c—2a—k (1_)
U@)+U(-7) "~ U(®)+U(-1) & U(D)+U(-7) ,

whose coefficients of 7" and 7'*" lead us, respectively, to the Jensen convolutions

S (i) S e (R e (172

k 3

Z(la++211i)(rf—_2kk):zl:%{(‘11:;: H-(52s2 ,’)} (1.7b)

k

and

Further formulas of Jensen type and binomial identities related to Theorem 1.3 as well as their
applications to determinant evaluations can be found in [2] and [5].
2. TRIPLICATE CONVOLUTIONS

When S =1/3, the functional equation between two variables rand 7 in (0.2) is cubic. The
substitution of its solution 7(37) = V3(z) can be used to reformulate the generating functions
stated in (0.2a)-(0.2b) as follows.

Lemma 2.1: Denote the cubic root of unity by ¢ = exp(27 /3). For two indeterminates 7 and V'
related by

22 ) [FEB.
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Jr=p? ——c>V A7) +—2— (2.12)

A()

A@) =Y1+1-43 /2, (2.1b)

where

we have the functional equations

1=V (2) xV (z0) XV (10?), (2.2a)
0=V (1) + oV (t0) + 0% (r0?), (2.2b)
=3t =V (o) (t0*) + oV (2 (10) + 0V (z)V (r0?), (2.2¢)
and generating functions
> s (‘” K/ 3)(3 Y =pa(r), (2.32)
a+k/3 v 3V3(7)
Z ( )( i T (2.3b)

Their combinations yield the following generating functions on triplicated binomial coefficients.

Proposition 2.2: With complex function V' defined as in Lemma 2.1, we have generating function

relations:
-—{3" a+ ")(3 o, (2.4a)
0 a+

3a +a+k 143k
ra+ k( 143k )(37) ’ (2.40)

§‘48

V3 () +V* (tw) +V* (10%)

_
Il

1
Ms

(ST

V34(7) + 03 (10) + oV * (t0?)

k=0

V3 (1) + oV (t0) + 0V * (10*) =

iMs
:-—L

2
3a_[3+a+ k) €1 it (2.4¢)

“Z+a+k\ 2+3k

Theorem 2.3 (Triplicate convolution identities): Given two natural numbers m and n, define

+2, m=n(mod3)
O(m,n) =™ +@*™" =4 ’ 2.5
(m, n) -1, m#n(mod3). 2:5)
Then there holds a binomial identity
3a Ztatk a 2+a-k
; %+a+k( m+3k )g+a—k( n-3k (2.62)
__2a (™"+2a -a :
_’"T*"+2a( m+n )+"‘T+" (m+n )g(m ) (2.6b)
and its reversal
3¢ 42k ¢ 2 yc-2k
zk:l;ﬂ+c+2k( m+ 3k )2—3"+c——2k( n-3k (2.72)
2 2miln 4 2¢ —c (22
_—2"’;2"+20( m+n )+—2’";2"—c( m+n o, m). (2.70)
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Proof: By means of Lemma 2.1, manipulate generating functions:
V34(0) x 2(0) + V3 (@) + V3 (z0%)} =V (7) +V ™ (t0) +V % (z00?),
V3 (2) x (1) + 0V (10) + 0V (t00?)} =V (2) + 0V > (t0) + 0 > (100?),
V34(7) x V(1) + oV (r0) + 0¥ ¥ (10?)} =V (7) + 0V 3 (10) + 0V > (100?).

According to Proposition 2.2, the coefficients of 7"V, v=0, 1, 2, in the formal power series
expansions lead us, respectively, to the following binomial convolutions,

Z 3a yta+k a Fta-k
— s+a+k\ v+3k )2+a-k\ n-3k
2a (MY +2a -a (2v
= +— 3 0
"+TV+2"( n+v ) Y —q ( +V) v, ),
which gives rise to the first finite bilateral convolution formula stated in the theorem under param-

eter replacements £ — k+p, v—>m—3p, and n—> n+3p. Rewriting every binomial coefficient
in the first binomial identity through

7( ) Yy (Z/)

we immediately obtain the second one in the theorem. [

3. QUADRUPLICATE CONVOLUTIONS

For #=1/4, the functional equation between two variables 7 and 7 in (0.2) becomes
quartic. The substitution of its solution 7(47) = W*(z) leads the generating functions stated in
(0.2a)-(0.2b) to the following lemma.

Lemma 3.1: For two indeterminates 7 and W related by

41=W3——V117¢:>W=L—-———‘m2§1)~12, (.1a)
where
Q1) ={# @)+ (D) +¥ (D) (3.1b)
and
#(7), l//(r)=%/;tz+\/14+1/27, (3.1¢)
we have the functional equations
Q(7)= Q(-7) = Q(i7) = Q(-i7), (3.2a)
W) x W(—7) x W(it) x W(—it) =1, (3.2b)
#(0) x y(r)=1 and F(1)-y’(r) =272, (3.20)
and generating functions
g e 4("”‘/ 4)(4 o = (), (3.32)
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& (a+k/4 _ 4wtta(g)
Eo( k )(4T)k T 143 (3.3b)

Their combinations bring about the following generating functions.

Proposition 3.2: With the complex function W as in Lemma 3.1, we have the following generat-
ing function relations:

I;) c+k( ak )(47) =W () +W*(-7) (3.4a)
+W(ir) + W*(=it), (3.4b)
o 4 (Ltc+k ek _ prdes_ ppder
k%%+c+k( 1+4k )(41) =@ - (.40)
—iW*(it) +iW*(~i7), (3.4d)
-4 I+c+k . .
2 Trorh (22 ak )(‘” =T ) (3.4¢)
=0
—W*(i7) - W*(=i7), (3.4f)
- 4 dtc+k . .
2, l+cc+k (43 +c4k )(4T =) - () (3.4g)
k=0 4
+iW*(it) —iW* (~i7). (3.4h)

Theorem 3.3 (Quadruplicate convolution identities): For two integers m and n, let
+1, m+n#0(mod4),
&(m,n) = ( ) (3.5)
-1, m+n=0(mod4).

Then, for mxn 1 (mod 4), we have

_ 4 [GHe-k|_c [(fte-k

Zk: %+c+k( m+4k )%+c—k( n—4k ) (3.6a)
_4c %_C'i'k —-C %_C_k

+; %_c+k( m+ 4k )%-c—k( Ak )s(m,n) (3.6b)

__ 2 (™42 —2¢ (mm_2c

_mTMJ“zc( m+n )+%E—ZC( m+n )S(m,n), (3.60)

Otherwise, for m xn =1 (mod 4), there holds

4c  (Z+c—k c Lic—k
; %+c+k( m+4k )§+c—k( n—ar )50 (3.72)
—4c n-c—k ~C 4-c—k
+§k; 2+T"’—c+k(2+m+4k)%—c—k(n—2—4k) (3.7b)
_ 2 (mr+2c -2c (#-2c
_”’T+"+20( s )8(m,n)+—m¥_2c( fen | (3.7¢)
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Proof: For v=0, 1, 2, 3, define the binomial convolutions 0, (, ¢) by

0 THc+k c L+c-k
om, )= Z—+c+k(v+4k L+c—k\ n-4k ) (3.8)

The proof of the theorem will be divided into four cases according to m (mod 4).

Case 1: m=0 (mod 4). By means of Lemma 3.1 and (3. 4a)-(3.4b), we may manipulate
generating functions:

—WR() + W (2) x (W*(2) + W*(~) + W (i7) + W* (i)}
= W)W (~it) + W (=W (i7) + W (=)W~ (=i 7).

The coefficients of 7" in the formal power series expansions lead us to the following binomial
convolutions,

Ay(n,©) * 0y, 0) - -—"’{Z“%j (3.92)

2c+2\ n
“Z{_Cc("c)%;c (_nj‘i ] ) o, ), (3.9b)

where 2(n, k) = (—1)"{i* +i* +i2**3"} whose values are displayed in Table 1.

TABLE 1. Values of Ay(n, k)

n
k 0 1 2 3
0 3 |1—-2 1 | —-2—1
1 -1 —1 1 1

2 -1 |¢+2| =3 | 2—1
3 -1 -1 1 1

For n=0 (mod 2), Table 1 suggests that we express (3.9b) as
n -4 - 2-c—k
By(m,c)=(-1) /22 : ( 4k )_%]}_( n—4k )
n f-c) - (Zk-c
gl

which may be simplified, by means of (0.1a), to the following relation:

(‘ - Zc) (3.10a)

8a(m0) =120, —0) ()"

=(-1)"2Ay(n,—c), n=0 (mod 2). (3.10b)
While 7= 1 (mod 2), it is easy to check from Table 1 that

n

k(n k(n-k)

Ao, k) + A, n— k) = —2(~1)"F2

Then the combination of (3.12b) and its reversal enables us to write
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_ — —C % —-C k(n-k)
N N e O
4

- (£-c) -c¢ [(%t-c — (£-¢) -¢ (Zk-c
= 4 4 -4 4 4
zk:%_c( ko )rt-c\ n-k ksoéxl‘t)%_c ko )rt-c n- k).

Applying (0.1a) to the penultimate sum, we get

Ay(n,c) =—0,(n, —c)+z__igc-(%_n2c) (3.11a)
4
=-Ay(n,—c), n=1 (mod?2). (3.11b)

Both relations (3.10) and (3.11) may be stated as the single one A,(n, c)+ Ay(n, —c)&(0,7) =0
which, in view of (3.9a), confirms the case m=0 (mod 4) of Theorem 3.3 with replacements
k—>k+pandn—on+4p.

Case 2: m=1 (mod 4). In view of Lemma 3.1 and (3.4c)-(3.4d), we have the generating
function relation:
W (1) + W* (1) x (¥ () —~W*(~1) = iW*(it) +iW* (-i7)}
=W ()W (=it) +iW*(~0)W*(i1) - iW ()W (-i7).

The coefficients of 7!*”

convolutions,

in their formal power series expansions leads us to the following binomial

y 2¢  (2c+12
A(n, ¢) € Oy(n, C)_—2c+cl+_n( 01:n4 ) (3.12a)
— £k _ - l+n-k
—Zi_cc( c] l+n—kc c(lin k) i(n, k), (3.12b)

where A4,(n, k) = (=1)"{i"** +i"*™2* 1i*3%} ' whose values are displayed in Table 2.

TABLE 2. Values of 4,(n, k)

in

k 0 1 2 3
0 1 1 —1 -1
1 | —2—-4) 1 |i—-2| 3
2 7 1 —1 ~1
3 2—1 | =3 |i+2| -1

For n=1 (mod 2), Table 2 suggests that we rewrite (3.12b) as
b_c) —c (Bt
A0 =DT Zk ( k )‘*;"‘—c(Hn—k)
e T-c+k —c 22 _c—k
D% Zl—c+k( 3+4k )——c k(n—2—4k)

which may be simplified, by means of (0.1a), to the following relation:
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A, 0) = (=D 4 20(1+1"+’120) | (3.13a3)
- (—l)T (n—-2,-c), n=1 (mod2) (3.13b)
=A(n,—c), n=3 (mod4), (3.13¢)

where the last line is derived by reversing the summation order.
When 7= 0 (mod 2), it is easy to check from Table 2 that

n— k)(k 1)

A k)+A(n1+n—k)=-2(- 1)

Then the combination of (3.12b) and its reversal enables us to express

k_ — l+n—k _(n—k)gk D
l(n C) z k C( )1+2-.k (l-:n k ( )

_ k_ —c  (Bok_c — [k-c) ¢ (Bmk_¢
—Zk —-c Link _ 1+n k —4 2 k_c\ k bk 1+n k)
t 4 4 k=1(mod 4) 4 4

Applying (0.1a) to the penultimate sum, we get

_ —2c (Hn-2¢
An,c) =-0,(n,—c)+ l—j’l—ZC( L in ) (3.14a)
=-A(n,-¢), n=0 (mod?2). (3.14b)

Both relations (3.13) and (3.14) may be restated as
A(n,c)+A(n,—c)e(l,n) =0, n#1 (mod4)
O, c)+03(n—-2,-¢): n=1 (mod4)

__ 2 (Hm42c L2 Lr_2¢

T haggel 1+n ) Bro3c Gn
which, in view of (3.12a), confirms the case m=1 (mod 4) of Theorem 3.3 with replacements
k—>k+pand n—o>n+4p.

Case 3: m=2 (mod 4). Using Lemma 3.1 and (3.4e)-(3.4f), perform the formal manipula-
tion on generating functions:
—-WE() + W (7) x (W (2) + W*(-1) - W““(l 7)-W*(~it)}
=W W (—it) - W (=W (i1) - W (—)W (=i 7).

The coefficients of 72" in the formal power series expansions lead us to the following binomial
convolutions,
def 2c [2c+2n
AZ(n’ )= 02(” c)- 2+ 2+n( 24n ) (3.152)
24n—k
— —€ | 3¢ —C _4_
sl en o
where

2(11 k) ( l)n {12+k :243k +i 2+n+2k}
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whose values are displayed in Table 3.
For n= 0 (mod 2), Table 3 suggests that we reformulate (3.15b) as

2+n-k

k
A — (-1 0l —C Z"—C -C 4 —-C
2(n’c)‘ ( ) %%_c k 2+Z—k_c 24n—k

—4¢ (L-c+k) -c¢ (Z-c-k
(-1 n/2 2 L
D ;%—c+k(2+4k )ﬂ c—k(n—4k )’

4-

which may be simplified, by means of (0.1a), to the following relation:

2+n
A = —(—1 n/2 . _1yn/2 —2c T_ZC ]
250 = =000 -+ () | T (3.162)
=—(-1)"2A,(n,~c), n=0 (mod?2). (3.16b)
TABLE 3. Values of 4,(n, &)
NN ERE: 3
0 -3 |i+2| -1 | 2—4
1 1 —1 =1 )
2 1 1—21 3 |-2—1
3 1 —1 -1 1

While 7= 1 (mod 2), it is easy to check from Table 3 abdve that

k(n+k)

Ay, k) + Ap(m, 2+~ k) =2(=1) *

Then the combination of (3.12b) and its reversal enables us to state

c (E-c) - (2zEk_¢ Kotk
AZ(”’C)Zgi—c(‘tk )——2":"‘—0(2111——]()(_1) ’
4

k 2+n-k k 2+n—k
_ —C "T—C —-C 4 —-C _ —C 7—"0 —C T—C
;%—c( k )2—“’2':&—0(2+n—k) 4 2 "—c( k )—2+Z‘k—c(2+n—k)'

k=2 (mod 4) 4

Applying (0.1a) to the penultimate sum, we get

_ B -2¢ (&r-2c
A, (n, ) ==0,(n, c)+_2%£_2c( D ) (3.17a)
=-A,(n,—c), n=1(mod2). (3.17b)

Roth relations (3.16) and (3.17) may be written as the single relation
Ay(n,c)+Ay(n,—c)e(2,n) =0,

which confirms, in view of (3.15a), the case m=2 (mod 4) of Theorem 3.3 with replacements
k—k+pandn—>n+dp.

Case 4: m=3 (mod 4). Finally, from Lemma 3.1 and (3.4g)-(3.4h), we get the following
functional equation:
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WD) + W¥(7) x W (2) - W*(=1) +iW*(it) —iW* (=iT)}

=W (W (~it) = iW (=)W (i7) +iW * (—)W 4 (i7).
The coefficients of 7>*" in their formal power series expansions leads us to the following binomial
convolutions,

e 2 2c+3n
A3(n> C) d=f 03(": C)—’ 20+cﬂ( §+’: ) (3183)
— k _ — 3+n—k
‘Z&_cc( c) o - 0(31,, k)/ls(n k), (3.18b)

where
3(71 k) ( l)n {l3+k 143k + i3+n+2k}

whose values are displayed in Table 4.

TABLE 4. Values of 15(n, k)

ki" 0 1 2 3
0 | = | =1 3 1
T 42| =1 | 2=7 | =3
2 =7 | =1 ; 1
3 i=2| 3 [—2—i| 1

For n=1 (mod 2), Table 4 suggests that we rewrite (3.18b) as
s—Cct+k —C s—-c—k
8319 = (D7 TLT c+k(1+4k)2+" Ze- k(2+n—4k)

-z () (5)
T hk-c\ k )¥E-c\3+n-k

which may be simplified, by means of (0.1a), to the following relation,

Ay, 0) = (-1)F =2 (31;;30) (3.192)
+(—1)"T"<>l(2+n, —¢), n=1 (mod2) (3.19b)
= (—l)”%lA3(n, —-¢), n=1(mod4), (3.19¢)

where the last line is derived by reversing the summation order.
While 7= 0 (mod 2), it is easy to check from Table 4 that

n— k)(k+l

Ay, K)+A5(n, 3+n—k)=-2(-1) T

Then, the combination of (3.18b) and its reversal leads us to

E_c -C 3n—k _ (n—k)(k+1)
Ay, €)= z" c( k )3’"’"‘ c(3+n k)( D
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- k_ — 3tn-k _ k 3+n-k
*Zi—c(“k )M—c(}in—k)_‘l Z k _ (4k )3+n—k (34 k)'
k 4 4 k=3(mod4) 4 — € g —e\otn-

Applying (0.1a) to the penultimate sum, we get

O -2¢ [&2-2¢
Ay(n,¢) =—04(n,—c) + %,1_26( 43+n ) (3.20a)
=-A;(n,—c), n=0 (mod2). (3.20b)

Both relations (3.19) and (3.20) may be reproduced as
As(n,c)+Ay(n,—c)e(3,n) =0, n#3 (mod4),
Os(n, c)+0,(2+n,—¢): n=3 (mod4)

__ 2 (¥r+2 L2 Hu . 2¢
3 42c\ 3+n 3#n_2¢\ 3+n )
which confirms, in view of (3.18a), the case m=3 (mod 4) of Theorem 3.3 with replacements

k—>k+pandn—>n+4p.
Therefore, the proof of Theorem 3.3 is complete. O

Remark: During the 100" anniversary of Tricomi (October 1997, Rome), Richard Askey sug-
gested that the author try another approach to the binomial identities stated in Theorem 1.3. This
may be presented as follows:

Letting #=1/2 in (0.1b), we obtain

Z‘H_c]’c/z(a+]{f/2)(c,;f]{,2)=(a;c). (3.21a)

a (a+k/2)=(_1)k -a (—a+k/2)
a+k/2\ & —a+k/2 k ’

we can reformulate (3.21a) as
r ¢ a (a+k/2\(c-k/2\_(c-a
k=o(‘l) a+k/2( k )( n—k )—( n ) @3.210)

Then identities (1.5a) and (1.5b) follow directly from.the combinations of (3.21a) and (3.21b).
Two other identities, stated in (1.6a)-(1.6b) and (1.6c)—(1.6d), may be derived similarly from
(0.1a). The details are left to the reader.

By means of
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