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1. INTRODUCTION
In [3], Shonhiwa considered the function

G, (n)= Z 1,
1<ay,..,a,<n
(al’"" ak)=1

where k >2, n>1, and asked: "What can be said about this function?" As a partial answer, he
showed that

Gn=3 Tua 7]

where p is the Mobius function (see [3], Theorem 4).
There is a more simple formula, namely,

n k
G =3 w2 M)
= J
leading to the asymptotic result

Gy(n) =

k O(nlogn), ifk=2,
n { (nlogn) @)

2o oy, ifks3,

where ¢ denotes, as usual, the Riemann zeta function. Formulas (1) and (2) are well known (see,
e.g., [1]). It follows that '
Gm_ 1

lim —

oot L)

i.e., the probability that k positive integers chosen at random are relatively prime is ﬁ

For generalizations of this result, we refer to [2].
Remark 1: A short proof of (1) is as follows: Using the following property of the Mobius func-
tion,
Gm= Y ud),
12a,.,ap<n d|(ay,..,a;)
and denoting a; =db;, 1< j <k, we obtain
n n n k
Go)=Yud) T 1=3u@|a].
d=l1 18y, ., by Snid  d=1
In what follows, we investigate the question: What is the probability 4, that & positive inte-

gers are pairwise relatively prime?
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For k=2 we have, of course, 4, = ﬁ =0607... and for k >3, A4, <ﬁ. Moreover, for
large k, —4%,5 is nearly 1 and 4, seems to be nearly 0.

The next Theorem contains an asymptotic formula analogous to (2), giving the exact value of
Ak .
2. MAIN RESULTS

Let k,n,u>1 and let

FOm= 3 1

1gay, ., qp <n
(a;.a;)=1ij
(a5, u)=1

be the number of k-tuples {ay,...,a,) with 1<aq,,...,a, <» such that a,, ..., a, are pairwise rela-
tively prime and each is prime to u.
Our main result is the following

Theorem: For a fixed k 21, we have uniformly forn, #>1,
PM(m)y = A, f,@n* + 00" og" ' n), 3

A

p

rw=T1(1-—2=)

plu

where

and &(u) is the number of squarefree divisors of u.
Remark 2: Here f,(u) is a multiplicative function in ».

Corollary 1: The probability that & positive integers are pairwise relatively prime and each is
prime to # is

n—>w

. P®@n
lim kn_"() = A, f, ().

Corollary 2: (u=1) The probability that & positive integers are pairwise relatively prime is

4. =11 (1 ——;;)k—l(l +£;—1).

P

3. PROOF OF THE THEOREM
We need the following lemmas.
Lemma 1: Forevery k,nu>1,
B8 = 3R,
(=

Proof: From the definition of P*)(n), we immediately have
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rAm= 3 ¥ 1= 3 Redm= SR%G)

agn=1 1<ap,.,aqsn apg=1 J=1
(agep =1 g, ap)=Li#]  (ag,,u)=1 (J, =1
(9, a;4)=1

(a;,u)=1

Lemma 2: Forevery k,u>1,

_ 5 MDD
fk(u) ;Z'u k(d) >
where
k-1
w=u[][1+51
a,(u ug( )

and @ () stands for the number of distinct prime factors of u.

Proof: By the multiplicativity of the involved functions, it is enough to verify for n=p“ a

prime power:

Zy(d)k“’(d)_ k(Hk 1)“ -

i~ ak(d) P p 1 :fk{pa)'

p+k
Note that, for £ =2, a,(u) = y(u) is the Dedekind function.

Lemma 3: For k =1, let v,(n) denote, as usual, the number of ordered %-tuples {(a, ...,

positive integers such that n=a,-----a,. Then

@ 35D = 0gog x),
k-1
®) 3 r,;](zn) _ O(logx x)
Proof:

@) Apply the familiar result ¥, __ 7, () = O(xlog*™' x) and partial summation.
PPy nsx “k P

(b) Byinductiononk. Fork=1, r,(n)=1,n21, and

E,—;—%@)w@)

is well known. Suppose that

p k(n) B 1 k-1
YA =@t + 0(———°gx ").

n<x

Then, from the identity v,,(n) = 2, 74 (d), we obtain

sz+12(n) - Z @) _ Z Z Tk(e)
d2 2

n<x n de<x d<x es<x/d e
k ! k-1 X
— 2 -
=X dz(m +0(( %) tog dj)
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d<x x d<x

= ¢ (4(2)+0(§))+0(%”—xmg :)

by (6), and we get the desired result (5).
Now, for the proof of the Theorem, we use induction on k. For k£ =1, we have the Legendre
function

POm= Y 1=3 ¥ wd)=3 Y ud)

1<asn a=1 d|(a,u) a=1 d|a
(a,u)=1 dlu

~Sud) ¥ 1=F )| 2]- 3 w5 +00)

dlu 1<j<n/d dlu dlu

=nY @m(z ;ﬂ(d)).

dlu dlu
Hence,

B9 ()= Z 1=n# 00) ™
(a u) 1

and (3) is true for k =1 with 4, =1, f,(u) =22 ¢ denoting the Euler function.
Suppose that (3) is valid for & and prove 1t for £ +1. From Lemma 1, we obtain

BQ0)= YBm)= Y. (A4S Gn' + 00w og"n)

(1)1 (j)l—“l 8
Jou Jou
()

= A fy(uy* Zn:fk D+ 0[6'('4)""'1 log"™! "i 9(]))-
(f,j“=)1=1 =
Here 37_,0(j) < X7 7,(j) = O(nlogn), where 7, = 7 is the divisor function.
Furthermore, by Lemma 2,
f (@) k@)
Z S dz, ,,(;13@ z ”(ZZ(d) 2z,
(1 u) 1 (J,u)=1 (d,u)=1 (e,u)=1

Using (7), we have
n w(d)
A= Y M ("flfl") +0(0(u)))

j=1 d<n ak(d)
U, u)=l (d,u)=1 (9)
_ 9 JZC) k*@
==n g:" d2,@ +0(9( )dz<" ]
d,u)=1

since a,(d)>d.
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Hence, the main term of (9) is

¢(u) P D _ )
Z doa,(d) u EI( (p+k—1))

(d u) 1
_ ok N,k Y
-"U(l p(p+k—1))£1(l p)(l p(p+k—1))’

O(n 3 k;id)J = O(n 3 E;fzﬂj = O(log"'n)

and its O-terms are

d>n d>n
by Lemma 3(b) and
0(9(14); %} [9( 2)3 ’k(d)J 0(6(u) log* n)

from Lemma 3(a).
Substituting into (8), we get

” k e
=Tl (-t ATl (-3 )

+ 0" logh ™ n)+ O(8(u)n* logk n) = 4,1, .,(n* 1+ O(0(u)n* log* n)

by an easy computation, which shows that the formula is true for £ +1 and the proof is complete.

4. APPROXIMATION OF THE CONSTANTS 4,

Using the arithmetic mean-geometric mean inequality we have, for every £ >2 and every

prime p,
1 k-1 1 1 k-1
(l‘z) (“ p) k“k(("“”(l‘;‘) (”TD b

and obtain the series of positive terms,

}pj log [(1 - %)_kﬂ(l +k_l) J 21 g[(l - -;—) kﬂ(l N kp—,, 1]1) —_log4,  (10)

where p, denotes the n prime.
Furthermore, the Bernoulli-inequality yields

k-1
(1—i) >1-k=1
P P

(4 )

for every k >2 and every prime p.

hence,
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Therefore, the N*®-order error R, of series (10) can be evaluated as follows. Taking
N >k-1, wehave p,, >k -1 and

© 1Y 1) o PR
Ry = log (1———) (1+ ) < log 1—(
N n=§/:+l ( P P n-—%ﬂ P }

o N2 ™ 2
2 108(1+‘p'2(f(k121)2)< y b

n=N+1 n=N+1 PZ ~ (k- 1)2 '

Now using that p, <2n, valid for n>5, we have

= k—1)? k-1 & 1 1
R ( - -
N<n§+l4n2—(k—1)2 2 n§+l(2n—(k—1) 2n+(k—1))

_k-1 1 1 1 (k-1?
= (2N—k+3+2N—k+5+ +2N+k—1) <

2 22N -k+3)
In order to obtain an approximation with r exact decimals, we use the condition
Y
S (L) P W1V
20N-k+3) 2

and have N > 1((k-1)*-10" +k - 3). Consequently, for such an N,

N k-1
1 k-1
A4, ~ 1-— 1+
¢ H( p,,) ( P, )
with r exact decimals.

Choosing 7 = 3 and doing the computations on a computer (I used MAPLE V), we obtain the
following approximate values of the numbers 4, :
A, =0607..., A, =0286..., 4, =0114..., A = 0040...,
A =0013..., A, =0004..., 4;=000L...

Furthermore, taking into account that the factors of the infinite product giving A4, are less than 1,

we obtain
20 9 100 99
i 9 _4 1 99 6
A <” I-— || 1+=|<107", 4 <|| 1-— I+=1<107"°.
10 1( p,,)( p) 0 ( P)( P)

n n=1 n n
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