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Northwest Missouri State University, 800 University Drive, Maryville, MO 64468. 

If you wish to have receipt of your submission acknowledged, please include a self-addressed, 
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Each problem and solution should be typed on separate sheets. Solutions to problems in this 
issue must be received by November 15, 2002. If a problem is not original, the proposer should 
inform the Problem Editor of the history of the problem. A problem should not be submitted 
elsewhere while it is under consideration for publication in this Journal. Solvers are asked to 
include references rather than quoting "well-known results". 

BASIC FORMULAS 

The Fibonacci numbers Fn and the Lucas numbers Ln satisfy 

Ai+2 ~ A*+i + 4> A) = 2, L\ = 1. 

Also?« = (l + V5)/23 £ = ( l -V5)/2 , Fn = (an-fin)/<j5,md Ln = an+pn. 

PROBLEMS PROPOSED IN THIS ISSUE 

B-935 Proposed by Ovidiu Furdui$ Western Michigan University, Kalamazoo, MI 
Prove that 

where the arguments are measured in degrees. 
B-936 Proposed by Jose Luis Diaz & Juam Jose Egozcue, 

Universitat Politecnica de Catalumya, Terrassa, Spain 
Let n be a nonnegative integer. Show that the equation 

x5 + F2nx4 + 2(F2^2F,2
+1)x3 +2F2n(F2n -2/fti)*2 +F2> + F2

3, = 0 

has only integer roots. 

B-937 Proposed by Paul & Bruckman, Sacramento, CA 
Prove the following identities: 
(a) {F„f + (F„+1)2 +4(F„+2)2 = (Fn+3)2 +(Ln+1)2; 
(h) {Lnf + (Z„+1)2 + 4(Zn+2)2 = (L„+3)2 + (5F„+1)2. 
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B-938 Proposed by Charles K Cook, University of South Carolina at Sumter, Sumter, SC 
Find the smallest positive Integer k for which the given series converges and find its sum: 

W If; 
«=1 K 

B-939 Proposed by N. Gauthier, Royal Military College of Canada 
For n > 0 and 5 arbitrary integers, with 

f(l,m,n) = f(.l,m) = nr'(j)ln), 

prove the following identities: 
An U/3J 

4w L//3J 
A) 3 - 2 - t o w ^ = X Z/(/-3^w)[('-2nf)/?+1+nrf?+J.1]. 

SOLUTIONS 
A Relatively Prime Fibonacci Couple 

B-921 Proposed by the editors 
(Vol 39, no. 3, June-July 2001) 

Determine whether or not F6n -1 and F6n_3 +1 are relatively prime for all n > 1. 

Solution by Russell Jay Hendel, Towson University, Baltimore, MD 
We go beyond the problem requirements by also providing explicit formulas for the relative 

primeness. 
Recall that two integers a and b are relatively prime if and only if there exist integers x and y 

such that 
ax + by=l. (1) 

Accordingly, let 
a = F6n-\ a = F6n-l, 
b = F6n_3 + hb = F6n_3 + l 

The parallel processor algorithm of Hendel [2] motivates defining 
x = F6n-5 - {F6n-4 ~ ^n-W " 4} / 16, 

y = {F6n+3+F6n+l-F6n_3-F6n_5-l2}/l6. 
Using periodicity properties of the Fibonacci sequence modulo 16, it is straightforward to verify 
that x and y are in fact integers. 
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Using these definitions of x and y, (1) can be proven for all n by using the Verification 
Theorem of Dresel [1]. We need only check (1) for the first values of n and this is easily done by 
hand calculator. For example, when n = 3, (1) yields the explicit identity 2583*211 - 611* 892 = 1. 
References 
1. L. A. G. Dresel. 'Transformations of Fibonacci-Lucas Identities." In Applications of Fibo-

nacci Numbers 5:169-84. Ed. G. Bergum, et al. Dordrecht: Kluwer, 1993. 
2. R. J. Hendel. I?A Fibonacci Problem Classification Scheme Useful to Undergraduate Peda-

gogy.11 In Applications of 'Fibonacci Numbers 5:289-304. Dordrecht: Kluwer, 1993. 
Also solved by Paul S* Bruckman, JL A. G. Dresel, Lake Superior State University Problem 
Group\ H.-J. Seiffert, Gabriela & Pantelimon St arnica (jointly), ami the proposers. 

A Prime Search 

B-922 Proposed by Irving Kaplansky, Matk Sciences Research Institute, Berkeley, CA 
(Vol 39, no. 3, June-July 2002) 

Determine all primes p such that the Fibonacci numbers modulo p yield all residues. 

Solution by Pantelimon Stanica, Auburn University, Montgomery, AL 
In The Fibonacci Quarterly 6.2 (1968): 139-41 ("Fibonacci Sequence Modulo m"), A. P. 

Shah proved that ifp is a prime and p = 1? 9 (mod 10) then the Fibonacci sequence does not form 
a complete residue modulo/?. 

In The Fibonacci Quarterly 8.3 (1970):000-00 ["Fibonacci Sequence Modulo a Prime p = 3 
(mod 4)fl], G. Bruckner proved the same for the remaining cases if p > 7. Therefore, the Fibo-
nacci sequence modulo p yields all residues if and only if p = 2,3,53 7 by an easy calculation and 
using the above references. 

In The Fibonacci Quarterly 383 (2000):272-81 ("Complete and Reduced Residue Systems 
of Second-Order Recurrences Modulo pn\ H.-C. Li proved that even the generalized Fibonacci 
sequence with parameters (a, 1) does not form a complete residue system modulo p > 5. 
L. A. G. Dresel also referred to the G. Bruckner reference. 
Also solved by P. Bruckman, JL A G. Dresel, and the proposer. 

Tie Fraefion Continues 

B-923 Proposed by Jose Luis Diaz & Juan Jose Egozcue, 
Universitmt Politecniea de Catalunya, Terrassa, Spain 
(Vol 39, no. 3, June-July 2002) 

Let ax be the Ith convergent of the continued fractional expansion: 

a = l + - — — | 

1+— L -
1 + ... 

Prove that 
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fc=0 

;=0 v / / « / _ ! 

Solution by Paul S. Bruckman, Sacramento, CA 
The readers of this journal will readily recognize the following result: 

aJ=FM/FJ 

(for typographical clarity, the notation is modified). 
(a) Let 

n-l 
A(nJ) = l/n^aJ+k. 

k=0 

Note that A(n, j) is the arithmetic average (A.M.) of the quantities aj9 aJ+h ..., a^n_x. By the 
A.M.-G.M. inequality, 

A(nJ)>G(n,j)^\l\aJ.+k\ . 
Note that G{n, j) = (FJ+rl/Fjf". 

Also, 
F„aj +F„_, = (Ff^+F^/Fj = FJ+n/Fr 

Thus, A(n, j) > (F„aj + F„_,)1/n. Q.E.D. 

(6) Let 

S(k,j) = fjkCi{aj_xyi. 
1=0 

Then 
5(*,/) = 0 + l/ay_I)* = (l+/v_i/F/)* 

= W +Fj_l)IFj)k = (F^/Fjf = ( a / . 

This corrects the statement of this part of the problem. 
Also solved by H.-J. Seiffert (essentially the same as the featured solution) and the proposer. 

A Generalization of a Lucas Numbers Identity 

A B-924 Proposed by K Gauthier, Royal Military College of Canada 
(Vol 3% no. 3, June-July 2001) 

For n an arbitrary integer, the following identity is easily established for Lucas numbers: 

AEW+2 + ^2n-2 ~ 3^2n • ( * ) 

Consider the Fibonacci and Lucas polynomials, {î (w)}JJLo an£* {Ln(u)}™=0, defined by 
F0(u) = 0, FM = 1, Fn+2(u) = uF^M + FM, 

and 
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L0(u) = 2, Ii(i/) = u, Ln+2(u) = uLn+l(u) + L„(u), 
respectively. The corresponding generalization of (1) is 

L2n+l(u) + L2n_2(u) = (M2 + 2)L2n(u). (2) 

For m a eonnegatlve integer, with the convention that a discrete sum with a negative upper limit is 
identically zero, prove the following generalization of (2): 

Z2W(I I ) + I / ( W 2 + 4 ) = (n2+2) 
> 0 2/ 

2m i 2/ n 2/W 
2/ + 1 n

21 F2n(u). 
(3) 

Also prove the following companion identity: 

(n + l)2m+1F2n+2(u) + („ - lfm+1F2n_2(u) 

= II XfatUn" 
>o 

I 2 » + (n2+2) 
/=0 

2/w + nM2/+i 
2/ + 1 

27- F2„(i/). 
(4) 

Solution byH.-J. Seifferi9 Berlin^ Germany 
In (4), the upper index in the second sum on the right-hand side must be replaced by m. 
It is known [see A. F. Horadam & Bro. J. M. Mahoe, "Pell and Pell-Lucas Polynomials," The 

Fibonacci Quarterly 23.1 (1985):7-20, equations (3.23), (2.2), (2J), and (3.22)] that 
(u2 + 2 ) £ 2 » = L2n+2(u) + L2^2(u\ 

(u2 + 4 ) F 2 » = L2n^(u) + L2n+l(u), 

L2M = ^ - l ( " ) + F2n+l(U\ 
(u2 + 2)F2n(u) = F2n+2(u) + F2^2(;M); 

note that (5) is the corrected version of (2). 
jr (Mn2i = (n + i ) 2 "+{n^ i ) 2 ^ 
1=0 

m—\ V f 2m W i _(» + l)2m-(?*-l)2m 

f (2i» + A 2/ = (» + l)2" ,+1-(H-l)2m+1
> 

f. f 2i»+n„2/+i _ (»+i)2m+i+(»-i)2m+i 

lA 21+1JW - 2 

(5) 
(6) 
(7) 
(8) 

(9) 

(10) 

(11) 

(12) 

Proof of (3): In view of (5), (6), (9), and (10), we must show that 
(n + l)2mL2n+2(M) + (n~lfmL2n_2(u) 

(n + l)2m + (n-l)2m
 /T , . , T , y, , (n + l)2m-(n-l)2m , , , . r . . . 

= A / _ _ ! 1 _ (Z2W+2(JI) + £2„_2l«)) + i £—^ L- {uL2n_x{u) + uL2nU{u)\ 

which is true because 
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L2n-l(U) + ^ 2 » - l 0 ) + uL2n+l(U) = L2n+l(U) 

and, equivalently, 

Lln+lto ~ uL2n-lU) ~ uL2n+l(U) = h n ^ l 

Proof of (4): This is easily verified by applying (7), (8), (11), and (12), and using 
^ - i W + ̂ 4 + iW + 4 - 2 W = F2n+2(u). 

Also solved by P. Bruckmmn and the proposer. 

The Gandhi Polynomials 

In response to Paul Bruckman's question, Reiner Martin sent the following remark: 

In the August 2001 issue of The Fibonacci Quarterly, Paul Bruckman asks whether 
the polynomials P(r, n) given by JP(1, ri) = n and P(r +1, n) = n2 (P(r, n) - P{r, n -1)) 
are new to the literature. 

Indeed, these polynomials (or, rather, a trivial variation thereof) are known as 
Gandhi polynomials. References are: 
[1] D. Dumont, "Sur une conjecture de Gandhi concemant les nombres de Genocchi," 

Discrete Mathematics 1 (1972):321-27. 
[2] D. Dumont, "Interpretations combinatoires des nombres de Genocchi," Duke Math. 

Journal 41 (1974):305-U. 
Identifying these polynomials illustrates the usefulness of Sloane's On-line Encyclo-

pedia of Integer Sequences (http://www.research.att.com/~njas/sequences/). Entering 
the first few nonzero coefficients as 1, -1,2,3, - 8,6, -17,54, - 60,24 into the database 
yields a hit (up to signs) with the sequence A036970 (triangle of coefficients of Gandhi 
polynomials), where the references can be found. 

We wish to belatedly acknowledge the solution to problem B-915 by Walther Janous. In fact, his 
solution gives a sharper inequality that will appear in a separate proposal. 
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