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1. GENERATING FUNCTIONS 

Morgan-Voyce Generators 
Much has been written lately about the four Morgan-Voyce polynomials Bn(x), bn(x), C„(x), 

and cn(x). Basic properties of these polynomials are developed in [2], which contains appropriate 
reference material. 

The main purpose of this paper is to investigate the simplest features of the convolutions of 
the Morgan-Voyce polynomials and their corresponding numbers occurring when x = 1. Our 
Morgan-Voyce polynomials are defined [2] in terms of generating functions thus: 

$,BM)Tl=[l-(2 + x)y-y>Tl = g, B0(x) = 0, (1.1) 

ic„(x)y"=[2-(2 + x)y]g, (1.2) 

I&-i(*)y-1=[i-0+*)j'te, 0.3) 

icn(x)y" = [-l + (3 + x)y]g, (1.4) 

where, in (1.1)-(1.4), the functional notation g(x,y) = g has been dropped in the interest of sim-
plicity. So, g (1.1) may be said to be the "single parent" progenitor of the family (1.2)-(l .4)! 

Partial differentiation with respect to x (Section 5), which is a second feature of this paper, 
provides us with deeper insights into the essential nature of the polynomials. Two related papers 
could indeed have evolved from this paper but it is thought more desirable to preserve unity and 
cohesiveness. 

Motivation 
Stimuli for pursuing this investigation are: 

(i) in mountaineering language, "it [the challenge] is there!" and 
(ii) it increases our knowledge of convolution analysis beyond that already established for other 

well-known polynomials. 

Initial Conditions 
All the convolution number sequences displayed in (2.2a), (2.3a); (3.2a), (3.3a); (4.2a), (4.3a); 

(5.2a), (5.3a) for Bj?\x), Cf \x), b<*\x)9 c(
n

k)(x), respectively, when k = 1,2, have been checked 
against those obtainable from the general formulas in [1] which were determined by means of 
Cauchy products. This signifies that our generating function definitions must, when x = 1, pro-
duce exactly the same two initial numbers of each sequence as are specified in [1]. 
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2. CONVOLUTIONS FOR BM(x) 
Definitions 

The kth convolution polynomials B^k\x) of B„(x) are defined by 

X ^ C x ) / " 1 = g*+1, #>(*) = 0, (2.1) 
w = l 

(°° V+1 

= I ^ W J " - 1 , (2-la) 
\n=\ J 

s o t h a t ^ x ^ S ^ x ) . 
Correspondingly, the &rA convolution numbers B^k\l) = . g^ arise in the special case when 

x = l. 

Examples 
k=l 

k = 2 

B^(x) = 1, B?\x) = 4 + 2x, 53
(1)(x) = 10+12x + 3x2, 

j3f(x) = 20 + 42x + 24x2 +4x3, £5
(1)(x) = 35 + 112x + 108x2 + 40x3 + 5x4,.... 

B[2\x) = 1, B?\x) = 6 + 3x, £<2>(X) = 21 + 24x + 6x2, 
Bi2\x) = 56+108x + 60x2 + 10x3, 55

(2)(x) = 126 + 360x + 330x2 + 120x3 + 15x4 

(2.2) 

(2.3) 

Special Cases 
{^>}-= 1,6,25,90,300,.... (2.2a) 

{g&)yf = 1? 9,51,234,961,.... (2.3a) 

Larger values of k and n clearly Involve cumbersome expressions which do not excite our 
interest. 

Recurrence Relations 
Immediately from (1.1) and (2.1) we deduce that 

^*>(x) = # + 1 > (x ) - (2 + * ^ (2.4) 

with the simplest instance (k = 0) being 

Bn(x) = BiHx) - (2 + xyB&ix) + i£>2(x). (2.4a) 

Partial differentiation with respect to y in (2.1) and comparison of coefficients of yn~2 leads to 

(n - l)Bik >(x) = (t +1){(2 + x ) I ^ ( x ) - 21^>(x)} . (2.5) 

Amalgamating (2.4) and (2.5) and replacing k by k -1, we obtain the reduction 

(H - l)B^\x) = (* + * - 1X2 + ̂ l ( x ) - (/i + 2* - l)ie>2(x). (2-6) 

Recurrence (2.6) enables us to consolidate a table for Bjf\x), given x = 1, from two previ-
ously known successive values. Substitution of k = 0 reduces (2.6) to the defining recurrence for 
Bn(x). Furthermore, k = 0 in (2.5) produces the simple link (n -» n +1) 

nBn+l(x) = (2 + x)BJP(x)-2B^(x). (2.5a) 
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Further partial differentiation, but this time with respect to x, will be investigated for all the 
Morgan-Voyce polynomials separately in Section 5. 

3. CONVOLUTIONS FOR Cn(x) 

Coming now to Cn{x) we find ourselves enmeshed in more complicated algebra than that for 
Bn(x), by virtue of the definition (1.2). 

Definitions 
The kth convolution polynomials Cff\x) of Cn(x) are defined by 

£C<*>(x)/ =[2-(2 + x)y]k+Y+l (3.1) 

/ 00 \k+l 

= SQ(x)y , (3.1a) 
sothatq<0)(x) = Cn(x). 

Correspondingly, the kth convolution numbers Cj,k\l) = C^ arise when x - 1. 

Examples 
k=l 

C§>(x) = 4, Q(1)(x) = 4(2 + x), C?\x) = 12 + 20x + 5x2, 
C3

(I)(x) = 16+56x + 36x2+6x3, C[l)(x) = 20 + 120x + 142x2 + 56x3 + 7x4, 
k = 2 

C$2)(x) = 8, Q(2)(x) = 12(2 + x), C52)(x) = 48 + 72x + 18x2, 
C$2)(x) = 80+240x + 150x2 +25x3, Cf}(x) = 120+600x + 678x2 +264x3 + 33x4 

(3.2) 

(3.3) 

Special Cases 
(CS1*)? = 4,12,37,114, 345,.... (3.2a) 
{CfX = 8,36,138,495,1695,.... (3.3a) 

Recurrence Relations 
Taken together, (2.1) and (3.1) give rise, when k = 1, to 

^ ( x ) = 4 I ? f ( x ) ^ (3.4) 

Differentiate (1.2) partially with respect toy and equate coefficients of yn~l. After simplifica-
tion, the algebra reduces to 

«Cn(x) = (2 + x)5W(x)-4^!)1(x) + (2 + x)5(«2(x). (3.5) 

Uniting (3.4) and (3.5), we establish, on tidying up, that 

n(2 + x)Q(x) = (4 + x)xB<P(x) + Cft(x). (3.6) 

Multiply numerator and denominator of (3.1), when k = 0, by g (1.1). Simplification then , 
shows, by (2.1), that 

C^(x) = 2I?f(x)»3(2 + x ^ (3.7) 
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Extending (3.5) to k = 2, we quickly get 
Ci%(x) = 8£f \x) -12(2 + x)Bg{ + 6(2 + x)2B(

n%(x) - (2 + x)3B(%(x). (3.8) 

Beyond this, the formulas become even less algebraically attractive. Enchantment and time 
are lacking to pursue this unproductive activity. 

4. CONVOLUTIONS FOR bn(x) 

Definitions 
The kth convolution polynomials bf\x) ofbjx) are defined by 

00 

£ C M / " 4 = {1 - 0 + x)y}k+lgk+l (so btf\x) = 1) (4.1) 

= Z V i W y 1 • (4-la) 

In particular, when x = 1, the k'h convolution numbers b^k\l) = b^ emerge. 

Examples 
k=l 

b^Xx) = 2, biP(x) = 3 + 2x, tfpQc) = 4 + 8x + 2x2, 
bil\x) = 5 + 20x + l3x2 +2x3,.... 

k = 2 
b{2\x) = 3, b(2\x) = 6+3x, ^2)(x) = 10 + 15x + 3x2, 
bf\x) = 15 + 45x + 24x2 + 3x3,.... 

Special Cases 
{b«X = 1,2,5,14,40,.... (4.2a) 

{€% = 1,3,9,28,87,.... (4.3a) 
Recurrence Relations 

Put k = 1 in (4.1). Then we immediately construct the recurrence 

b®(x) = 5&CX) - 2(1 + x)^1}(x) + (1 + x)2BJ,%(x). (4.4) 

Partially differentiate (4.1) with respect to y. Then 

nb„(x) = Bi1\x)-24l\(x) + (l + x)Bil}2(x). (4.5) 

Together, with suitable adjustment, (4.4) and (4.5) produce 

nbn(x) = b^ix) + 2xB^}1(x) - (x + x 2 )^ 2 (x ) . (4.6) 

Next, let us multiply numerator and denominator of (4.1), when k = 1, by g (1.1). Upon the 
requisite algebraic manipulation with application ofb^\x) given by (4.1), when k = 2, namely, 

b<?\x) = B%(x) -3(1 + x)BJ,2\x)+3(1 + xfBtVfc) - (1 + x?BJ»2(x), (4.7) 

it transpires that 

ft(2)(x) = b®(x) + Bj,2)(x) - (3 + 2x)JBf>(x) + (3 + 4x + x2)£<2)
2(x) - (1 + x)2B$,%(x). (4.8) 

(4.2) 

(4.3) 
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Caveat! Anticipating (5.1) we might have been tempted to use the formula bn(x) = Bn(x) - Bn_t(x) 
[2, (2.13) : x = 1] to derive the valid generating function Y^=\bn{x)yn~l = (1-y)g. However, the 
difficulty here for convolutions is that the first element defined is bx{x) = 1. What we need is 
bQ(x) = 1 to be covered by the definition. Consequently, we must abide by (4.1). 

5. CONVOLUTIONS FOR cn(x) 
Definitions 

Care must be taken when we come to deal with the convolutions of the last of our four 
Morgan-Voyce polynomials. Our problem with cn(x) as defined in (1.4) is that c0(x) = - 1 . But 
we do not want negative numbers as part of convolutions. So we begin the sequence for cn(x) 
with cl(x) = l. 

Recalling [2, (3.7)] that cn(x) = Bn(x) + Bn__l(x)9 we define the kth convolution polynomials 
c^k\x) of cn(x) to be given by (n > 1) 

I c f W - ^ O + ^ V * 1 . (5.i) 
71=1 

Substitution of x = 1 engenders the kth convolution numbers c^(l) = c^. 

Examples 
* = 1 

4l)(x) = l, 4\x) = 6+2x, 4l)(x) = l9 + l6x + 3x2, 
C(D = 44 + 68x + 30x2 + 4x3, c3

(1) = 85 + 208* +159x2 + 48x3 + 5x4, .... 
k = 2 

c{2)(x) = 1, 42\x) = 9 + 3x, 42\x) = 42 + 33x + 6x2, 
c\2\x) = 138 + 189x + 78x2 + 10x3, <f>(x) = 363 + 759x+528x2 + 150x3 + 15x4,. 

Special Cases 
{ ^ ^ = 1,8,38,146,505,.... (5.2a) 

{cfX = 1,12,81,415,1815,.... (5.3a) 
Recurrence Relations 

From (5.1) and (1.1) we have automatically 

<£>(*) = i??)(x) + 2 ^ 1 ( x ) + ̂ 22(x). (5.4) 

Partial differentiation in (5.1) with respect to y9 in conjunction with (1.1), and n -> n +1, pro-
duces 

nc^(x) = (3 + x)B®(x) - 2i£\(x) - B$2(x). (5.5) 

Joining (5.4) and (5.5) ensures the neat nexus 
cW(x) = (4 + x)I$\x)-ncn+1(x). (5.6) 

Next, taking k = 0, multiply numerator and denominator in (5.1) by g. Organizing the result-
ing material and applying (1.1) then establishes the result: 

cn+1(x) = B^l(x)-(l + x)[BJ,1\x) + B^l(x)}+BJ,%(x). (5.7) 

(5.2) 

(5.3) 
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6. PARTIAL DIFFERENTIATION 
In this section, partial differentiation is performed only with respect to x. 

Notation 
Successive orders of partial differentiation (first, second, third, ..., it4) will be represented by 

superscript primes ', ", m, ...9k primes, where the unbracketed superscript k is to be clearly distin-
guished from the bracketed km convolution order symbol superscript (k). Thus, we will have 

Likewise for C„(x), bn(x), and cn(x). 

L Bjftx): Equate appropriate coefficients using (1.1) in 

11=1 m=0 

unfolding the nice result 
B>n{x) = B%{x). (6.1) 

Repetition of the process gives 
B>Xx) = 2Bi%(x). (6.1a) 

Generally, 
# ( x ) = *!£&(*)• (6.1b) 

Temporarily revert to Bjp(x). Then we may write 

fiBi2\x)y"-l=[{l-(2 + x)y+y'}^{(2 + x)y-l}]gi = fdB<,l\x)y"-l
 + {(2 + x)y-l}gi, 

whence 
BP(x) = B£\x) + (2 + x)i£{(x) - B™2{x). (6.2) 

Accordingly, (6.1a) and (6.2) conjoined give 
B?>(x) = Bj,*>(x) - (2 + x)i£> (x) + BV2(x) (6.3) 

which is (2.4) when k = 1. 
Two pleasant theorems now conclude this subsection. 

Theorem 1: B^.2(x) - Bftx) = (n + l)B®(x). 

Proof: 
B'^{x)-B';{x) = 25<2>(x)-2£<2J2(x) by (2.12) 

= 2BJP(x)+2{(2 + x)i£>(x) - B™2{x)} - 2B™2(x) by (2.7) 
= 2B£\x) + 2{(2 + x)i£> (x) - 2B™2(x)}. 
= 2Bi1\x) + (n-l)BJ,l\x) by(2.8) 
= (n + l)B®(x). 

Corollary 1: 2Zm
n=2nB^x(x) = B£(x) + ^ ( x ) . 

More generally, 
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Theorem2: B^+2(x)~B^(x) = (*-l)!(w + l)^2-*(*)-
In particular, we have B'n+2{x) - B'n{x) = (n + l)Bn+l(x) (=Q+1(x)) as we expect from [2, 

(3.9), (3.24)]. 

DL C*(JC): Consider the relation Cn(x) = Bn+l(x) - Bn^(x) [2, (3.9)]. Redefine (1.2) In this con-
text to assert 

tc„(*)y"+1 = (y-f)g-y, c0(x) = 2. (6.4) 
w = l 

Elementary processes then, with [2, (3.24)] produce 

Q(x) = £«(x) - 3&(*) = nB„(x), (6-5) 
Q(x) = 2(^>(x) - SJ23(x)) = nB%(x) = nB&c), (6.6) 

culminating in 

Ck
n(x) = k ! (^i+ 1(x) - 5 « _,(*)) = «(* -1)! Bj&l(x), (6-7) 

whence 

xc(x)=*!(eu^)+cu^)~i)- (6.8) 
»=jfc+l 

In particular (A = 1), 
^ C ^ ^ W + ^ x ) . (6.8a) 
W = l 

Analogously to Theorem 2 there Is 

CLW ~ Cn (*) = < + 7 « + 2t1W, (6-9) 
which can be expressed In convolution form. Proof of the assertion (6.9) Is left to the reader. • 

HI. bk
n{x): Convolutions ofbn(x) do not appear In this section (see the Caveat In Section 4), so 

we may, on making use of [2, (2.13)], choose the definition 

tbMyn~l = (i~y)g, Mx) = h (6.10) 

Then, by (1.1), 
K<*) = 4%(x) - Bt%(x) = B'n{x) - BU*), (6=11) 

%(x) = 2(Bi%(x) - 4%(x)) = Bfr) - BU*l (6-12) 
Eventually, and generally, 

bk
n{x) = A!(5S(x) - 2 # U * ) ) = Bk

n{x) - BUx). (6.13) 

Summation discloses that 
m 

Jjh'n{x) = R^l{x) = B'm{x) (6.14) 

while 

£**(x) = *!i£>t(x) = 2£(x). (6.15) 
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From nBn{x) = Q(x) = bf
n(x) + be

n+l(x), we may deduce after a little rearrangement that 
m 

X(-irn«5„(x) = &;+1W (6.16) 

which can be generalized to b^+l(x). 

TV. C*(JC): Appealing to [2, (3.7)], we take 

fdcri(x)y^ = (l^y)g. (6.17) 

Following the procedure in III, we rapidly reach the general situation: 

<*(x) = k\{B^k{x) + B^Ux)) = Bk
n(x) + BUx). (6.18) 

From nBk
n{x) = C*+1(x) = c^(x)-c*+1(x) (see [2, (3.11)]), it then transpires that 

m 

X«*) = 0*)- (6-19) 
Suppose k = 1 in (6.18). Addition then reveals that 

m 

2(-i)-c;(x) = ( - i r ^ iW = (-ir^;(x), (6.20) 
whence, by (6.16), 

Z(-i)"cj(*)=(-iri;*;(x). (6.21) 
n=2 n=2 

7« CONCLUSION 
Undertaking a thorough investigation of the latent features of the mixed foursome of Morgan-

Voyce polynomials is a task of rather Herculean proportions, but no doubt somewhat more satis-
fying than cleansing the Augean stables. One challenge confronting us is an examination of the 
rising and falling diagonal polynomials associated with the Morgan-Voyce polynomials. For a 
related study of this kind of project, the recent paper [3], containing many references, is strongly 
suggested.. 
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