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1. INTRODUCTION 

Given a positive integer N, a representation of N as a sum of distinct Fibonacci numbers in 
descending order is a Fibonacci representation of N. Let R(N) be the number of Fibonacci repre-
sentations of N. For example, J?(58) = 7, since 58 can be written as: 

55 + 3 34 + 21 + 3 34 + 13 + 8 + 3 
55 + 2 + 1 34 + 21 + 2 + 1 34 + 13 + 8 + 2 + 1 

34 + 13 + 5 + 3 + 2 + 1 
Any positive integer N can be represented, uniquely as the sum of distinct, nonconsecutive Fibo-
nacci numbers; this representation is the Zeckendorf representation of N, denoted Zeck N. In 
particular, Zeck 58 = 55 + 3 = i^0+J^,in subscript notation. 

The subscripts of the Fibonacci numbers appearing in Zeck N allow calculation of R(N) by 
using reduction formulas [3], [4], If Zeck N - Fn+k + K, where K = Fn + *"+Ft< Fn+l, then 

R(N) = R(F^2q + K) = qR(K)+R(Fn+l-K-2), k = 2q, (1.1) 

R(N) = R(Fn+2g+l+K) = (q + l)R(K), k = 2q + l. (1.2) 

Further, subscripts in Zeck N can be shifted downward c to calculate R(N-l), 

R(N-l) = R(F„+k_c + Fn_c + -+Ft_c-l), (>c + 2. (1.3) 

Lastly, tables for R(N) contain palindromic lists. For N within successive intervals Fn<N< 
Fn+l - 2, the values for R(N) satisfy the symmetric property 

R(Fn+l-2-M)=R(Fn+M), 0<M<F„_h n>3. (1.4) 

The table for R(N) repeats patterns within intervals and subintervals although with increasingly 
larger values; indeed, R(N) -appears fractal in nature. What interests us, however, is the inverse 
problem: Given a value «, write an integer N such that R(N) = n or, most interesting of all, find 
the least N having exactly n representations as sums of distinct Fibonacci numbers. 

Let 4? be the least positive integer having exactly n Fibonacci representations. Then { 4 } = 
{1,3,8,16,24,37,58,63,...}, but while the first 330 values for 4 are listed in [6], 4 is given by 
formula only for special values of n. However, when p is prime, all Fibonacci numbers used in 
Zeck Ap have even subscripts. The sequence {BJ of the next section arises from an attempt to 
make sense of {AJ when n = p is prime. 

2. EVEN-ZECK INTEGERS AND THE BOUNDING SEQUENCE {BJ 

If an integer N has a prime number of Fibonacci representations, then the subscripts of the 
Fibonacci numbers appearing in Zeck N have the same parity. Since R(F2k+1) = R(F2k), we 
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concentrate upon even subscripts. We will call a positive integer whose Zeckendorf representa-
tion contains only even-subscripted Fibonacci numbers an even-Zeck Integer. 

Here we study a bounding sequence {Bn}9 where B„ > A„, n> 1. We let Bn be the least 
even-Zeck integer having exactly n Fibonacci representations. Note that An=Bn whenever A^ is 
an even-Zeck integer. 

We begin by listing even-Zeck N and computing R(N) for N in our restricted domain. In 
Table 2.13 we underline the first occurrence of each value for R(N) and list subscripts only for 
Zeck N. Notice that 2k integers N have Zeck N beginning with F2(k+Y). For N in the interval 
F2k <N < F2k+l - 2, R(N) takes on values in a palindromic list which begins with k - R(F2k) and 
ends with k = R(F2k+l - 2 ) , with central value 2. Interestingly, every third entry for R(N) is even. 

TABLE 2.1. 
R(N) 

I 
2 
1 
3 
2 
3 
1 
4 
3 
5 
2 
5 
3 
4 
1 

N 
1 
3 
4 
8 
9 
11 
12 
21 
22 
24 
25 
29 
30 
32 
33 

R(N) 
ZcckN 
2 
4 
4,2 
6 
6,2 
6,4 
6,4,2 
8 
8,2 
8,4 
8,4,2 
8,6 
8,6,2 
8,6,4 
8,6,4,2 

for Even-Zeck N3t<N< 
R(N) 

5 
4 
7 
3 
8 
5 
7 
2 
7 
5 
8 
3 
7 
4 
5 
1 

N 
55 
56 
58 
59 
63 
64 
66 
61 
76 
77 
79 
80 
84 
85 
87 
88 

ZetikN 
10 
10,2 
10,4 
10,4,2 
10,6 
10,6,2 
10,6,4 
10,6,4,2 
10,8 
10,8,2 
10,8,4 
10,8,4,2 
10,8,6 
10,8,6,2 
10,8,6,4 
10,8,6,4,2 

In Table 2.1, the listed values for R(N) for N = Fm+K can be obtained by writing the 
values (1), 4, 3, 5, 2, ..., from R(N) for N^Fn + K, interspersed with their sums: (1), 5, 4, 7, 3, 
8, 5, 7, 2, ..., the first half of the palindromic sequence of R(N) values for N = Fl0+K, where, 
of course, the second half repeats. The first (1) arises from R(Ft -1) = 1, t > 1; the algorithm 
computes R(N) for even-Zeck N in the interval F2k<N< F2k+l -1, using values obtained from 
the preceding interval for N. 

Theorem 2.1: If N is an even-Zeck integer such that Zeck N ends in F2c9 c>2, F2k<N< 
F2ku - 1 , and N* is the even-Zeck integer preceding N9 then 

R(N) = R(N + l)+R(N*). (2.1) 

Further, R(N + 1) = R(M) and R(N*) = R(Mm), where A4® is the even-Zeck integer preceding 
Min the interval F2k_2 ^ M < F2k„t - 1 . 

Proof: We will use (1.3) to shift subscripts in computing R(N + T) and R(N*). If N = 
Fik +' '9 + Fic+2p -t-F^, c>2, then the even-Zeck integer preceding Nis 
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While (N-l) Is not an even-Zeck integer, we can apply (1.3) to shift each subscript down 
(2c - 2) to obtain an even-Zeck integer, 

= ^(^2k~2c+2 + "°+ F2p+2 +F2-l)= R(F2k-2c+2 + ' *' + F2p+2) = R(K), 

where K is an even-Zeck integer. Similarly, shifting subscripts down 2 c - 2 in (2.2), we obtain 
R(N*) = R(N -1) . From [3], R(N) = R(N +1)+R(N -1) for any integer N such that Zeck N 
ends in F2c, c > 2. The rest of Theorem 2.1 follows from similar subscript reductions, so that 

R(N + 1) = R(F2k_2 + • • • + F2c+2p_2 + F2c_2) = *(Arf), (2.4) 

and/i(Jn = * ( ^ ^ • 
When we list the 2k values for R(N) for even-Zeck N in the interval F2k<N < F2M -1, the 

corresponding values for N can be found by numbering the entries for R(N). For example, 
in Table 2.1, 66 is the 7th entry in the interval Fl0<N<Fn-l (the 6th entry after 55), and 
6 = 2 2 +2 ! corresponds to F2(Ul) + F2{ur); Zeck 66 = F10 + F6+F4. If R(N) is the m* entry in 
the interval F2k<N<F2M-l, and if (iw-l) = 2p + —+2W

? then the associated even-Zeck 
integer Nhas Zeck N = F2k +F2(i?+1) + ••• +i^(w+1). Further, the list is palindromic; the wi* entry 
for /?(#)'equals the (2*"1 -w)* entry. 

Since Ap is an even-Zeck integer when p is prime, Bp = ^ p for prime j?, and Bn> A„ for all 
w > 1. The first occurrences of R(N) in Table 2.1 give us {BJ = {1,3,8,21,24, _ , 58,63,...}, 
where B6 is as yet unknown. Table 2.2 lists the first 89 values for {Bn}, from computation of 
R(N) for even-ZeckN,1<N<F23. 

n 
67* 
68 
69* 
70 
71* 
72 
73* 
74* 
75 
76* 
77 
78 
79* 
80 
81* 
82 
83* 
84 
85 
86 
87 
88 
89* 

Bn 
7166 
7221 
7200 
8158 
7310 
18719 
7831 
8187 
7954 
7205 
18295 
18164 
7815 
7959 
7925 
18918 
18154 
18240 
18112 
19083 
18167 
18146 
7920 

TABLE2.2. B„for l<«<89 
n 
r 
2* 
3* 
4 
5* 
6 
7* 
8* 
9 
10 
11* 
12 
13* 
14 
15 
16 
17* 
18* 
19* 
20 
21* 
22 

Bm 
1 
3 
8 
21 
24 
144 
58 
63 
147 
155 
152 
173 
168 
385 
398 
461 
406 
401 
435 
1215 
440 
1016 

n 
IT 
24 
25 
26 
IT 
28 
29* 
30 
31* 
32 
33 
34* 
35 
36 
37* 
38 
39 
40 
41* 
42 
43* 
44 

Bn 
1011 
1063 
1053 
1045 
1066 
2608 
1050 
1139 
1160 
2650 
2642 
1155 
2663 
2807 
2647 
6841 
2969 
2749 
2736 
7145 
2757 
2791 

n 
45 
46* 
47* 
48 
49* 
50* 
51 
52 
53* 
54 
55* 
56 
57 
58 
59* 
60 
61* 
62 
63 
64 
65 
66 

Bn 
3134 
2990 
2752 
6975 
2985 
3019 
6930 
6917 
6967 
19298 
3024 
7163 
6972 
7297 
7349 
6933 
7218 
7836 
7171 
7315 
7208 
7899 
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In Table 2.2, * denotes Bn = Am which is always true for n = Fk or Lk, and when n is prime. 
However, while we can have Bn = An when n is composite, the most irregularly occurring values 
for B„ are when n is even. 

Theorem 2.2: The following special values for n have An = /?„: 

" = ̂ fc+i 4 = ^ + ^ 4 + ^ - 8 + ^ - 1 2 + -% * ^ 2 ; (2.5) 
/i = ZJk_1 Bn = F2k+F2k„6+F2k_lQ + F2k„l4 + °«% k>3. (2.6) 

Proof: An has the above values for the given values of n from [1]. Since in these two cases 
An is an even-Zeck integer, An~Bn. • 

From computation of the first 610 values for Bm it appears that if Zeck n begins with Fk9 that 
is, Fk <n<Fk+i9 then Zeck Bn begins with J ^ , F2k+29 or ^ + 4 ; this has not been proved. How-
ever, Fm+l is the largest value for R(M) in the interval F2m<M < F2m+l> and all other values for 
R{M) which appear in that interval have Zeck n beginning with Fm or a smaller Fibonacci num-
ber. Note that we are relating n and Bn in an interesting way, since the subscripts in Zeck N are 
used to compute R(N). 

3* PROPERTIES OF {£„} 

Theorem 3.1: IfN is an even-Zeck integer such that F2k< N < F2k+h and if M - Fk+t - 1 , then 
the three largest values occurring for R(N) are: 

R(N) = n N = Bn 

Fk+l M = F&1-19 k>2; (3.1) 

/4+i-/i-4 A/ + 5(-l)*, k>6; (3.2) 
/ki-^-4-^-* M + 39(-l)*, **9. (3.3) 

For even-Zeck JV in this interval, the following values for R(N) do not occur: 
R(N) = Fk+l-p, l<p</U + F W - 1 ? * >9, (3.4) 

except for p = Fk_4. In particular, 

R(N) = Fk+i-l k>7, 
is a missing value. 

Proof: From [1], M is the smallest integer having Fk+l Fibonacci representations; Zeck M 
appears in (2.5). Tables for R(N) show palindromic behavior within each interval for N as well 
as "peaks" containing clusters of values where N = JB„. The l!peak value" is the sum of two adja-
cent values for R(M) at the "peak" of the preceding interval F2k„2 ^M<F2k^t from the forma-
tion of the table for R(N). 

Table 3.1 exhibits behavior near the primary peak value R(N) = Fk+l for the interval 

Recalling (2.1), when Zeck N ends in F2c > F4, R(N) = R(N +1) + R(N*)9 where N* is the even-
Zeck integer preceding N. Since we are looking at consecutive even-Zeck N in Table 3.1, the 
formula for each value of R(N) can be proved by induction, k > 6. 
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TABLE 3.1. R(N) for Even-Zeck JV, F2k +FU_4 <N <F2k +F2 

*odd: M = Fk\t-l = F2k+F2k_4 + - Fu+Fn+F6 

R(N) 

Fu+Ft-s 
4-2 
F -F 
1 k+\ £ k-~4 
Fk-l 

4+1 
4 
4- i 
Fk-2 

^k+\ ~ At-4 

N 

A / - 8 
M-7 
M-S 
M-A 
M 
M+l 
M + 3 
M + 4 
M+13 

Zeck Wends with: 

• • + ^ 4 + ^ 0 
••+^4+^10+^2 
..+ Fu+Fl0 + F4 

..+Fu + Fi0 + F4 + F2 

..+FU + FW + F6 

..+ FU+F10 + F6 + F2 

..+ Fl4 + Fl0+F6 + F4 

..+FH+Fl0 + F6 + F4 + F2 

..+ FU+FW+FS 

kevm: M = Fk\1-l = F2k+F2k_4 + --+Fu+F8+F4 

R(N) 

Fk+l - Lk_4 

4-2 
4- i 
4 
Fk+\ 
4- i 
4+i - Fk_4 

4-2 
Fk+Fk_5 

F*-3 

N 

M-13 
M - 1 2 
M - 3 
M-2 
M 
M + l 
M + 5 
M + 6 
M + % 
M + 9 

Zeck Abends with: 

..+ Fn+F6 + F4 

..+ Fl2+F6 + F4 + F2 

..+ Fn+Fs 

..+ Fn+Fg+F2 

..+ FU+FS+F4 

..+ F]2+Fi+F4+F2 

,.+ Fa+F,+F6 

..+ Fl2+Fi + F6 + F2 

..+ Fn+Ft+F6 + F4 

..+Fu+Fi+F6 + F4+F2 

We show that R(N) = Bn for n = Fk+l - 4 „ 4 because we cannot get the same result for a 
smallerN. In Table 3.1, NIs In the Interval F2k + F2k_4 < N <F2k + F2k„3. To have R(N) = Fk+l-
Fk_4 for a smaller N9 we must have F2k< N <F2k + F2k„4. From (2.6), Lk_t Is the largest value 
for R(N) for even-ZeckNin the Interval F2k+F2k_6 < N<F2k + F2k__4, where Lk_t = Fk + 1_ 2 < 
Fk+\ ~ 1-4 = 1 + 1-2 +1-s> s o R(*0 = 1+i - 1 - 4 cannot occur for N<F2k+ F2k_4, establish-
ing (3.2). Equation (3.3) follows in a similar manner. • 

Corollary 3.1.1: For n - Fk+l -Fk__4 as in Theorem 3.1, 4? = B„ for k > 7. 

When JV is any positive integer, /?(#) displays "peak" values near R(N) = Fk+1 similar to 
those listed in Table 3.1 for even-Zeck integers N. The three largest values for R(N), when Nis 
any positive integer, F2k<N<F2k+h are Fk+U Fk+l-~Fk_5 = 4Fk_2, and 1 + 1 - 1 _ 4 . When n = 
41-2, 4i = Af + 8(-l)*+1 for M = Fk

2
+l-l. The values for R(N) = Fk+l-p, l<p<Fk_5-l, 

k > 6, are missing for iV in that interval. 
A similar "secondary peak" in the lists for R(N) clusters around Lk_h both for N any positive 

integer and for TV an even-Zeck integer; hence, Theorem 3.2. 

N = Bn 

N^Bn 
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Theorem 3.2: If M = F2k + F2k_6 + F2k_l0 + --- = F2k + if_2 - 1 , then when 

» = 4 - i B„ = M, k>5; (3.5) 
n = Lk_l-Lk^ B„ = M+5{-l)k-\ k>l; (3.6) 

» = 4 - i - 4 - 6 - 4 - i o Bn = M+ 39(-i)k-\ k>ll (3.7) 

Corollary 3.2.1: For n = 4 - i " Lk_6 as in Theorem 3.2, A„ = Bn for k > 9. 

4. UNANSWERED QUESTIONS 

Theorem 3.1 shows some values for R{N) that are missing within each interval for even-
Zeck JV, F2k < N <i^^+i? k>9. In what Interval will those "missing values" first appear? The 
value n = R(N) always occurs for some evee-Zeck N9 since, in the worst case scenario, n = 
R(F2n). But when is {BJ complete? 

Conjecture 3.1.3: If R(N) is calculated for all even-Zeck N9 N <F2k+5, thee {BJ is complete 
for l<n<Fk. IfFk <n<Fk+l, then F2k <Bn<F2k+5. 

Finding the least integer having p Fibonacci representations, p prime, is an unsolved problem. 
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