THE LEAST INTEGER HAVING p FIBONACCI REPRESENTATIONS, p PRIME

Marjorie Bicknell-Johnson

665 Fairlane Avenue, Santa Clara, CA 95051
(Submitted April 2000-Final Revision September 2000)

1. $\mathbb{N} T R O D U C T I O N$

Given a positive integer N, a representation of N as a sum of distinct Fibonacci numbers in descending order is a Fibonacci representation of N. Let $R(N)$ be the number of Fibonacci representations of N. For example, $R(58)=7$, since 58 can be written as:

$$
\begin{array}{lll}
55+3 & 34+21+3 & 34+13+8+3 \\
55+2+1 & 34+21+2+1 & 34+13+8+2+1 \\
& & 34+13+5+3+2+1
\end{array}
$$

Any positive integer N can be represented uniquely as the sum of distinct, nonconsecutive Fibonacci numbers; this representation is the Zeckendorf representation of N, denoted Zeck N. In particular, Zeck $58=55+3=F_{10}+F_{4}$, in subscript notation.

The subscripts of the Fibonacci numbers appearing in Zeck N allow calculation of $R(N)$ by using reduction formulas [3], [4]. If Zeck $N=F_{n+k}+K$, where $K=F_{n}+\cdots+F_{t}<F_{n+1}$, then

$$
\begin{gather*}
R(N)=R\left(F_{n+2 q}+K\right)=q R(K)+R\left(F_{n+1}-K-2\right), \quad k=2 q, \tag{1.1}\\
R(N)=R\left(F_{n+2 q+1}+K\right)=(q+1) R(K), \quad k=2 q+1 . \tag{1.2}
\end{gather*}
$$

Further, subscripts in Zeck N can be shifted downward c to calculate $R(N-1)$,

$$
\begin{equation*}
R(N-1)=R\left(F_{n+k-c}+F_{n-c}+\cdots+F_{t-c}-1\right), \quad t \geq c+2 . \tag{1.3}
\end{equation*}
$$

Lastly, tables for $R(N)$ contain palindromic lists. For N within successive intervals $F_{n} \leq N \leq$ $F_{n+1}-2$, the values for $R(N)$ satisfy the symmetric property

$$
\begin{equation*}
R\left(F_{n+1}-2-M\right)=R\left(F_{n}+M\right), 0 \leq M \leq F_{n-1}, n \geq 3 . \tag{1.4}
\end{equation*}
$$

The table for $R(N)$ repeats patterns within intervals and subintervals although with increasingly larger values; indeed, $R(N)$ appears fractal in nature. What interests us, however, is the inverse problem: Given a value n, write an integer N such that $R(N)=n$ or, most interesting of all, find the least N having exactly n representations as sums of distinct Fibonacci numbers.

Let A_{n} be the least positive integer having exactly n Fibonacci representations. Then $\left\{A_{n}\right\}=$ $\{1,3,8,16,24,37,58,63, \ldots\}$, but while the first 330 values for A_{n} are listed in [6], A_{n} is given by formula only for special values of n. However, when p is prime, all Fibonacci numbers used in Zeck A_{p} have even subscripts. The sequence $\left\{B_{n}\right\}$ of the next section arises from an attempt to make sense of $\left\{A_{n}\right\}$ when $n=p$ is prime.

2. EVEN-ZECK INTEGERS AND THE BOUNDING SEQUENCE $\left\{\boldsymbol{B}_{\boldsymbol{n}}\right\}$

If an integer N has a prime number of Fibonacci representations, then the subscripts of the Fibonacci numbers appearing in Zeck N have the same parity. Since $R\left(F_{2 k+1}\right)=R\left(F_{2 k}\right)$, we
concentrate upon even subscripts. We will call a positive integer whose Zeckendorf representation contains only even-subscripted Fibonacci numbers an even-Zeck integer.

Here we study a bounding sequence $\left\{B_{n}\right\}$, where $B_{n} \geq A_{n}, n \geq 1$. We let B_{n} be the least even-Zeck integer having exactly n Fibonacci representations. Note that $A_{n}=B_{n}$ whenever A_{n} is an even-Zeck integer.

We begin by listing even-Zeck N and computing $R(N)$ for N in our restricted domain. In Table 2.1, we underline the first occurrence of each value for $R(N)$ and list subscripts only for Zeck N. Notice that 2^{k} integers N have Zeck N beginning with $F_{2(k+1)}$. For N in the interval $F_{2 k} \leq N \leq F_{2 k+1}-2, R(N)$ takes on values in a palindromic list which begins with $k=R\left(F_{2 k}\right)$ and ends with $k=R\left(F_{2 k+1}-2\right)$, with central value 2. Interestingly, every third entry for $R(N)$ is even.

TABLE 2.1. $\mathbb{R}(N)$ for Even-Zeck $N, \mathbb{1} \leq N \leq 88$

$R(N)$	N	Zeck N	$R(N)$	N	Zeck N
$\frac{1}{2}$	$\frac{1}{3}$	2	5	55	10
$\frac{2}{1}$	$\frac{3}{4}$	4,2	4	56	10,2
$\frac{3}{2}$	$\frac{8}{9}$	6	$\frac{7}{3}$	$\frac{58}{59}$	10,4
$\frac{9}{2}$	6,2	$\frac{8}{59}$	$10,4,2$		
3	11	6,4	$\frac{63}{}$	10,6	
1	12	$6,4,2$	5	64	$10,6,2$
$\frac{4}{3}$	$\frac{21}{22}$	8	8,2	2	66
	$10,6,4$				
$\frac{5}{2}$	$\frac{24}{25}$	8,4	7	$70,6,4,2$	
5	29	8,6	5	77	10,8
3	30	$8,6,2$	8	79	$10,8,2$
4	32	$8,6,4$	3	80	$10,8,4$
1	33	$8,6,4,2$	7	84	$10,8,6$
			4	85	$10,8,6,2$
		1	87	$10,8,6,4$	
			88	$10,8,6,4,2$	

In Table 2.1, the listed values for $R(N)$ for $N=F_{10}+K$ can be obtained by writing the values (1), $4,3,5,2, \ldots$, from $R(N)$ for $N=F_{8}+K$, interspersed with their sums: (1), $\underline{5}, 4, \underline{7}, 3$, $\underline{8}, 5, \underline{7}, 2, \ldots$, the first half of the palindromic sequence of $R(N)$ values for $N=F_{10}+K$, where, of course, the second half repeats. The first (1) arises from $R\left(F_{t}-1\right)=1, t \geq 1$; the algorithm computes $R(N)$ for even-Zeck N in the interval $F_{2 k} \leq N \leq F_{2 k+1}-1$, using values obtained from the preceding interval for N.

Theorem 2.1: If N is an even-Zeck integer such that Zeck N ends in $F_{2 c}, c \geq 2, F_{2 k} \leq N \leq$ $F_{2 k+1}-1$, and N^{*} is the even-Zeck integer preceding N, then

$$
\begin{equation*}
R(N)=R(N+1)+R\left(N^{*}\right) \tag{2.1}
\end{equation*}
$$

Further, $R(N+1)=R(M)$ and $R\left(N^{*}\right)=R\left(M^{*}\right)$, where M^{*} is the even-Zeck integer preceding M in the interval $F_{2 k-2} \leq M \leq F_{2 k-1}-1$.

Proof: We will use (1.3) to shift subscripts in computing $R(N+1)$ and $R\left(N^{*}\right)$. If $N=$ $F_{2 k}+\cdots+F_{2 c+2 p}+F_{2 c}, c \geq 2$, then the even-Zeck integer preceding N is

$$
\begin{align*}
N^{*} & =F_{2 k}+\cdots+F_{2 c+2 p}+\left(F_{2 c-2}+\cdots+F_{4}+F_{2}\right) \\
& =F_{2 k}+\cdots+F_{2 n+2 p}+\left(F_{2 c-1}-1\right) \tag{2.2}\\
& =N-F_{2 c}+F_{2 c-1}-1=N-F_{2 c-2}-1 .
\end{align*}
$$

While ($N-1$) is not an even-Zeck integer, we can apply (1.3) to shift each subscript down ($2 c-2$) to obtain an even-Zeck integer,

$$
\begin{align*}
R(N-1) & =R\left(F_{2 k}+\cdots+F_{2 c+2 p}+F_{2 c}-1\right)=R\left(F_{2 k-2 c+2}+\cdots+F_{2 c+2 p-2 c+2}+F_{2 c-2 c+2}-1\right) \\
& =R\left(F_{2 k-2 c+2}+\cdots+F_{2 p+2}+F_{2}-1\right)=R\left(F_{2 k-2 c+2}+\cdots+F_{2 p+2}\right)=R(K), \tag{2.3}
\end{align*}
$$

where K is an even-Zeck integer. Similarly, shifting subscripts down $2 c-2$ in (2.2), we obtain $R\left(N^{*}\right)=R(N-1)$. From [3], $R(N)=R(N+1)+R(N-1)$ for any integer N such that Zeck N ends in $F_{2 c}, c \geq 2$. The rest of Theorem 2.1 follows from similar subscript reductions, so that

$$
\begin{equation*}
R(N+1)=R\left(F_{2 k-2}+\cdots+F_{2 c+2 p-2}+F_{2 c-2}\right)=R(M), \tag{2.4}
\end{equation*}
$$

and $R\left(N^{*}\right)=R\left(F_{2 k-2}+\cdots+F_{2 c+2 p-2}+F_{2 c-2}-F_{2 c-4}-1\right)=R\left(M^{*}\right)$.
When we list the 2^{k} values for $R(N)$ for even-Zeck N in the interval $F_{2 k} \leq N \leq F_{2 k+1}-1$, the corresponding values for N can be found by numbering the entries for $R(N)$. For example, in Table 2.1, 66 is the $7^{\text {th }}$ entry in the interval $F_{10} \leq N \leq F_{11}-1$ (the $6^{\text {th }}$ entry after 55), and $6=2^{2}+2^{1}$ corresponds to $F_{2(2+1)}+F_{2(1+1)}$; Zeck $66=F_{10}+F_{6}+F_{4}$. If $R(N)$ is the $m^{\text {th }}$ entry in the interval $F_{2 k} \leq N \leq F_{2 k+1}-1$, and if $(m-1)=2^{p}+\cdots+2^{w}$, then the associated even-Zeck integer N has Zeck $N=F_{2 k}+F_{2(p+1)}+\cdots+F_{2(w+1)}$. Further, the list is palindromic; the $m^{\text {th }}$ entry for $R(N)$ equals the $\left(2^{k-1}-m\right)^{\text {th }}$ entry.

Since A_{p} is an even-Zeck integer when p is prime, $B_{p}=A_{p}$ for prime p, and $B_{n} \geq A_{n}$ for all $n \geq 1$. The first occurrences of $R(N)$ in Table 2.1 give us $\left\{B_{n}\right\}=\{1,3,8,21,24, \ldots, 58,63, \ldots\}$, where B_{6} is as yet unknown. Table 2.2 lists the first 89 values for $\left\{B_{n}\right\}$, from computation of $R(N)$ for even-Zeck $N, 1 \leq N<F_{23}$.

TABLE 2.2. B_{n} for $1 \leq n \leq 89$

n	B_{n}	n	B_{n}	n	B_{n}	n	B_{n}
1^{*}	1	23^{*}	1011	45	3134	67^{*}	7166
2^{*}	3	24	1063	46^{*}	2990	68	7221
3^{*}	8	25	1053	47^{*}	2752	69^{*}	7200
4	21	26	1045	48	6975	70	8158
5^{*}	24	27^{*}	1066	49^{*}	2985	71^{*}	7310
6	144	28	2608	50^{*}	3019	72	18719
7^{*}	58	29^{*}	1050	51	6930	73^{*}	7831
8^{*}	63	30	1139	52	6917	74^{*}	8187
9	147	31^{*}	1160	53^{*}	6967	75	7954
10	155	32	2650	54	19298	76^{*}	7205
11^{*}	152	33	2642	55^{*}	3024	77	18295
12	173	34^{*}	1155	56	7163	78	18164
13^{*}	168	35	2663	57	6972	79^{*}	7815
14	385	36	2807	58	7297	80	7959
15	398	37^{*}	2647	59^{*}	7349	81^{*}	7925
16	461	38	6841	60	6933	82	18918
17^{*}	406	39	2969	61^{*}	7218	83^{*}	18154
18^{*}	401	40	2749	62	7836	84	18240
19^{*}	435	41^{*}	2736	63	7171	85	18112
20	1215	42	7145	64	7315	86	19083
21^{*}	440	43^{*}	2757	65	7208	87	18167
22	1016	44	2791	66	7899	88	18146
						89^{*}	7920

In Table 2.2, * denotes $B_{n}=A_{n}$, which is always true for $n=F_{k}$ or L_{k}, and when n is prime. However, while we can have $B_{n}=A_{n}$ when n is composite, the most irregularly occurring values for B_{n} are when n is even.
Theorem 2.2: The following special values for n have $A_{n}=B_{n}$:

$$
\begin{array}{lll}
n=F_{k+1} & B_{n}=F_{2 k}+F_{2 k-4}+F_{2 k-8}+F_{2 k-12}+\cdots, & k \geq 2 ; \\
n=L_{k-1} & B_{n}=F_{2 k}+F_{2 k-6}+F_{2 k-10}+F_{2 k-14}+\cdots, & k \geq 3 . \tag{2.6}
\end{array}
$$

Proof: A_{n} has the above values for the given values of n from [1]. Since in these two cases A_{n} is an even-Zeck integer, $A_{n}=B_{n}$.

From computation of the first 610 values for B_{n}, it appears that if Zeck n begins with F_{k}, that is, $F_{k}<n<F_{k+1}$, then Zeck B_{n} begins with $F_{2 k}, F_{2 k+2}$, or $F_{2 k+4}$; this has not been proved. However, F_{m+1} is the largest value for $R(M)$ in the interval $F_{2 m} \leq M \leq F_{2 m+1}$, and all other values for $R(M)$ which appear in that interval have Zeck n beginning with F_{m} or a smaller Fibonacci number. Note that we are relating n and B_{n} in an interesting way, since the subscripts in Zeck N are used to compute $R(N)$.

3. PROPERTIES OF $\left\{B_{n}\right\}$

Theorem 3.1: If N is an even-Zeck integer such that $F_{2 k} \leq N<F_{2 k+1}$, and if $M=F_{k+1}^{2}-1$, then the three largest values occurring for $R(N)$ are:

$$
\begin{array}{lll}
R(N)=n & N=B_{n} & \\
F_{k+1} & M=F_{k+1}^{2}-1, & k \geq 2 ; \\
F_{k+1}-F_{k-4} & M+5(-1)^{k}, & k \geq 6 ; \\
F_{k+1}-F_{k-4}-F_{k-8} & M+39(-1)^{k}, & k \geq 9 . \tag{3.3}
\end{array}
$$

For even-Zeck N in this interval, the following values for $R(N)$ do not occur:

$$
\begin{equation*}
R(N)=F_{k+1}-p, 1 \leq p \leq F_{k-4}+F_{k-8}-1, k \geq 9, \tag{3.4}
\end{equation*}
$$

except for $p=F_{k-4}$. In particular,

$$
R(N)=F_{k+1}-1, k \geq 7,
$$

is a missing value.
Proof: From [1], M is the smallest integer having F_{k+1} Fibonacci representations; Zeck M appears in (2.5). Tables for $R(N)$ show palindromic behavior within each interval for N as well as "peaks" containing clusters of values where $N=B_{n}$. The "peak value" is the sum of two adjacent values for $R(M)$ at the "peak" of the preceding interval $F_{2 k-2} \leq M<F_{2 k-1}$ from the formation of the table for $R(N)$.

Table 3.1 exhibits behavior near the primary peak value $R(N)=F_{k+1}$ for the interval

$$
F_{2 k}+F_{2 k-4} \leq N<F_{2 k}+F_{2 k-3} .
$$

Recalling (2.1), when Zeck N ends in $F_{2 c} \geq F_{4}, R(N)=R(N+1)+R\left(N^{*}\right)$, where N^{*} is the evenZeck integer preceding N. Since we are looking at consecutive even-Zeck N in Table 3.1, the formula for each value of $R(N)$ can be proved by induction, $k \geq 6$.

TABLE 3.1. $\mathbb{R}(N)$ for Even-Zeck $N, F_{2 k}+F_{2 k-4} \leq N<F_{2 k}+F_{2 k-3}$
k odd: $M=F_{k+1}^{2}-1=F_{2 k}+F_{2 k-4}+\cdots F_{14}+F_{10}+F_{6}$

$R(N)$			
			Zeck N ends with:
	\ldots	\ldots	\ldots
	$F_{k}+F_{k-5}$	$M-8$	$\ldots+F_{14}+F_{10}$
	L_{k-2}	$M-7$	$\ldots+F_{14}+F_{10}+F_{2}$
$N=B_{n}$	$F_{k+1}-F_{k-4}$	$M-5$	$\ldots+F_{14}+F_{10}+F_{4}$
	F_{k-1}	$M-4$	$\ldots+F_{14}+F_{10}+F_{4}+F_{2}$
F_{n}	F_{k+1}	M	$\ldots+F_{14}+F_{10}+F_{6}$
	F_{k}	$M+1$	$\ldots+F_{14}+F_{10}+F_{6}+F_{2}$
	L_{k-1}	$M+3$	$\ldots+F_{14}+F_{10}+F_{6}+F_{4}$
	F_{k-2}	$M+4$	$\ldots+F_{14}+F_{10}+F_{6}+F_{4}+F_{2}$
	$F_{k+1}-L_{k-4}$	$M+13$	$\ldots+F_{14}+F_{10}+F_{8}$
	\ldots	\ldots	\ldots

N even: $M=\mathbb{F}_{k+1}^{2}-\mathbb{1}=F_{2 k}+\mathbb{F}_{2 k-4}+\cdots+F_{12}+\mathbb{F}_{8}+\mathbb{F}_{4}$

$R(N)$	N	Zeck N ends with:	
	\ldots	\ldots	\ldots
	$F_{k+1}-L_{k-4}$	$M-13$	$\ldots+F_{12}+F_{6}+F_{4}$
	F_{k-2}	$M-12$	$\ldots+F_{12}+F_{6}+F_{4}+F_{2}$
	L_{k-1}	$M-3$	$\ldots+F_{12}+F_{8}$
$N=B_{n}$	F_{k}	$M-2$	$\ldots+F_{12}+F_{8}+F_{2}$
	F_{k+1}	M	$\ldots+F_{12}+F_{8}+F_{4}$
	F_{k-1}	$M+1$	$\ldots+F_{12}+F_{8}+F_{4}+F_{2}$
B_{n}	$F_{k+1}-F_{k-4}$	$M+5$	$\ldots+F_{12}+F_{8}+F_{6}$
	L_{k-2}	$M+6$	$\ldots+F_{12}+F_{8}+F_{6}+F_{2}$
	$F_{k}+F_{k-5}$	$M+8$	$\ldots+F_{12}+F_{8}+F_{6}+F_{4}$
	F_{k-3}	$M+9$	$\ldots+F_{12}+F_{8}+F_{6}+F_{4}+F_{2}$
	\ldots	\ldots	\ldots

We show that $R(N)=B_{n}$ for $n=F_{k+1}-F_{k-4}$ because we cannot get the same result for a smaller N. In Table 3.1, N is in the interval $F_{2 k}+F_{2 k-4}<N<F_{2 k}+F_{2 k-3}$. To have $R(N)=F_{k+1}-$ F_{k-4} for a smaller N, we must have $F_{2 k}<N<F_{2 k}+F_{2 k-4}$. From (2.6), L_{k-1} is the largest value for $R(N)$ for even-Zeck N in the interval $F_{2 k}+F_{2 k-6}<N<F_{2 k}+F_{2 k-4}$, where $L_{k-1}=F_{k}+F_{k-2}<$ $F_{k+1}-F_{k-4}=F_{k}+F_{k-2}+F_{k-5}$, so $R(N)=F_{k+1}-F_{k-4}$ cannot occur for $N<F_{2 k}+F_{2 k-4}$, establishing (3.2). Equation (3.3) follows in a similar manner.

Corollary 3.1.1: For $n=F_{k+1}-F_{k-4}$ as in Theorem 3.1, $A_{n}=B_{n}$ for $k \geq 7$.
When N is any positive integer, $R(N)$ displays "peak" values near $R(N)=F_{k+1}$ similar to those listed in Table 3.1 for even-Zeck integers N. The three largest values for $R(N)$, when N is any positive integer, $F_{2 k} \leq N<F_{2 k+1}$, are $F_{k+1}, F_{k+1}-F_{k-5}=4 F_{k-2}$, and $F_{k+1}-F_{k-4}$. When $n=$ $4 F_{k-2}, A_{n}=M+8(-1)^{k+1}$ for $M=F_{k+1}^{2}-1$. The values for $R(N)=F_{k+1}-p, 1 \leq p \leq F_{k-5}-1$, $k \geq 6$, are missing for N in that interval.

A similar "secondary peak" in the lists for $R(N)$ clusters around L_{k-1}, both for N any positive integer and for N an even-Zeck integer; hence, Theorem 3.2.

Theorem 3.2: If $M=F_{2 k}+F_{2 k-6}+F_{2 k-10}+\cdots=F_{2 k}+F_{k-2}^{2}-1$, then when

$$
\begin{array}{lll}
n=L_{k-1} & B_{n}=M, & k \geq 5 ; \\
n=L_{k-1}-L_{k-6} & B_{n}=M+5(-1)^{k-1}, & k \geq 7 ; \\
n=L_{k-1}-L_{k-6}-L_{k-10} & B_{n}=M+39(-1)^{k-1}, & k \geq 11 . \tag{3.7}
\end{array}
$$

Corollary 3.2.1: For $n=L_{k-1}-L_{k-6}$ as in Theorem 3.2, $A_{n}=B_{n}$ for $k \geq 9$.

4. UNANSWERED QUESTIIONS

Theorem 3.1 shows some values for $R(N)$ that are missing within each interval for evenZeck $N, F_{2 k} \leq N<F_{2 k+1}, k \geq 9$. In what interval will those "missing values" first appear? The value $n=R(N)$ always occurs for some even-Zeck N, since, in the worst case scenario, $n=$ $R\left(F_{2 n}\right)$. But when is $\left\{B_{n}\right\}$ complete?
Conjecture 3.1.3: If $R(N)$ is calculated for all even-Zeck $N, N<F_{2 k+5}$, then $\left\{B_{n}\right\}$ is complete for $1 \leq n \leq F_{k}$. If $F_{k}<n<F_{k+1}$, then $F_{2 k}<B_{n}<F_{2 k+5}$.

Finding the least integer having p Fibonacci representations, p prime, is an unsolved problem.

REFERENCES

1. M. Bicknell-Johnson. "The Smallest Positive Integer having F_{k} Representations as Sums of Distinct Fibonacci Numbers." In Applications of Fibonacci Numbers 8:47-52. Dordrecht: Kluwer, 1999.
2. M. Bicknell-Johnson. "The Zeckendorf-Wythoff Array Applied to Counting the Number of Representations of N as Sums of Distinct Fibonacci Numbers." In Applications of Fibonacci Numbers 8:53-60. Dordrecht: Kluwer, 1999.
3. M. Bicknell-Johnson \& D. C. Fielder. "The Number of Representations of N Using Distinct Fibonacci Numbers, Counted by Recursive Formulas." The Fibonacci Quarterly 37.1(1999): 47-60.
4. L. Carlitz. "Fibonacci Representations." The Fibonacci Quarterly 6.4 (1968):193-220.
5. D. A. Englund. "An Algorithm for Determining $R(N)$ from the Subscripts of the Zeckendorf Representation of N." The Fibonacci Quarterly 39.3 (2001):250-52.
6. D. C. Fielder \& M. Bicknell-Johnson. "The First 330 Terms of Sequence A013583." The Fibonacci Quarterly 39.1 (2001):75-84.
AMS Classification Numbers: 11B39, 11B37, 11 Y55
