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1. INTRODUCTION

Given a positive integer N, a representation of N as a sum of distinct Fibonacci numbers in
descending order is a Fibonacci representation of N. Let R(N) be the number of Fibonacci repre-
sentations of N. For example, R(58) =7, since 58 can be written as:

55+3 34+21+43 34+13+8+3
55+2+1 34+21+2+1 34+13+8+2+1
34+13+5+3+2+1

Any positive integer N can be represented uniquely as the sum of distinct, nonconsecutive Fibo-
nacci numbers; this representation is the Zeckendorf representation of N, denoted Zeck N. In
particular, Zeck 58 = 55+3 = F{; + F,, in subscript notation.

The subscripts of the Fibonacci numbers appearing in Zeck N allow calculation of R(N) by

using reduction formulas [3], [4]. IfZeck N=F,,, + K, where K=F,+---+ F, <F,,, then
R(N)=R(Fy20 +K) =qR(K) +R(F, - K =2), k=2q, (1L1)
R(N)=R(F, 2011+ K) = (g +DR(K), k=2g+1. (12)
Further, subscripts in Zeck N can be shifted downward c to calculate R(N —1),
R(IN-0)=RF, o +F,_ ++F_ -1, t2c+2. (1.3)

Lastly, tables for R(N) contain palindromic lists. For N within successive intervals F, < N <
F,.,—2, the values for R(N) satisfy the symmetric property

R(Fyy~2-M)=R(F, + M), 0SM<F, ;, n23. (1.4)

The table for R(N) repeats patterns within intervals and subintervals although with increasingly
larger values; indeed, R(N) appears fractal in nature. What interests us, however, is the inverse
problem: Given a value n, write an integer N such that R(N)=n or, most interesting of all, find
the least NV having exactly # representations as sums of distinct Fibonacci numbers.

Let A, be the least positive integer having exactly # Fibonacci representations. Then {4,} =
{1,3,8,16,24,37,58,63,...}, but while the first 330 values for 4, are listed in [6], 4, is given by
formula only for special values of n. However, when p is prime, all Fibonacci numbers used in
Zeck A, have even subscripts. The sequence {B,} of the next section arises from an attempt to
make sense of {4,} when n=p is prime.

2. EVEN-ZECK INTEGERS AND THE BOUNDING SEQUENCE {B,}

If an integer N has a prime number of Fibonacci representations, then the subscripts of the
Fibonacci numbers appearing in Zeck N have the same parity. Since R(F,,)=R(F,;,), we
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concentrate upon even subscripts. We will call a positive integer whose Zeckendorf representa-
tion contains only even-subscripted Fibonacci numbers an even-Zeck integer.

Here we study a bounding sequence {B,}, where B, > A4,, n>1. We let B, be the least
even-Zeck integer having exactly » Fibonacci representations. Note that 4, = B, whenever 4, is
an even-Zeck integer.

We begin by listing even-Zeck N and computing R(N) for N in our restricted domain. In
Table 2.1, we underline the first occurrence of each value for R(N) and list subscripts only for
Zeck N. Notice that 2¢ integers N have Zeck N beginning with Fyk+1y- For N in the interval
F, <N <F,,; -2, R(N) takes on values in a palindromic list which begins with £ = R(F;,) and
ends with k¥ = R(F,;,, —2), with central value 2. Interestingly, every third entry for R(N) is even.

TABLE 2.1. R(N) for Even-Zeck N, 1< N < 88

R(N) N ZeckN R(N) N Zeck N
11 2 5 55 10
2 3 4 4 56 10,2
1 4 42 7 58 10,4
3 8 6 3 59 10,4,2
2 9 62 8 63 10,6
3 11 64 5 64 10,6,2
1 12 64,2 7 66 10,64
4 21 8 2 67 10,6,4,2
3 22 82 7 76 108
5 24 84 5 77 1082
2 25 8,42 8 79 1084
5 29 86 3 80 10,8,4,2
3 30 86,2 7 84 108,6
4 32 8,64 4 85 10,8,6,2
1 33 864,2 5 87 108,64
1 88 10,8,64,2

In Table 2.1, the listed values for R(N) for N = F,+K can be obtained by writing the
values (1), 4, 3, 5, 2, ..., from R(N) for N = F;+ K, interspersed with their sums: (1), 5,4, 7, 3,
8,5, 7,2, .., the first half of the palindromic sequence of R(N) values for N = F;+ K, where,
of course, the second half repeats. The first (1) arises from R(F,—1)=1, ¢ 21; the algorithm
computes R(N) for even-Zeck N in the interval F,, < N < F,,,, -1, using values obtained from
the preceding interval for N.

Theorem 2.1: If N is an even-Zeck integer such that Zeck N ends in F,,, c22, F), SN <
F,,.,—1, and N* is the even-Zeck integer preceding N, then
R(N)=R(N +1D)+R(N"). 2.1
Further, R(N +1)= R(M) and R(N")=R(M"), where M" is the even-Zeck integer preceding
M in the interval ), , <M< F,_;-1.
Proof: We will use (1.3) to shift subscripts in computing R(N +1) and R(N®). If N =
Fy + -+ + Fypp + By, €22, then the even-Zeck integer preceding N is
N =Fy+- +F2c+2p+(FZc—2 +e+ B+ F)
= F;k oot Ian+2p + (‘F;c—l - l) (22)
= N_Féc'*'Fic—l_l: N_F20—2 -1
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While (N -1) is not an even-Zeck integer, we can apply (1.3) to shift each subscript down
(2c - 2) to obtain an even-Zeck integer,
R(N - 1) = R(F;k toeet F;c+2p + Ec - 1) = R(‘Fék—2c+2 +eeet 1720+2p—20+2 +F‘2c—2c+2 - 1)

23
= R(Fypzons ++ Fapra + Fy = 1) = R(Fyegors + -+ Fypsz) = R, @3)

where K is an even-Zeck integer. Similarly, shifting subscripts down 2c—2 in (2.2), we obtain
R(N*Y=R(N -1). From [3], R(N)=R(N +1)+R(N —1) for any integer N such that Zeck N
endsin F,, ¢ >2. The rest of Theorem 2.1 follows from similar subscript reductions, so that

R(N+D)=R(Fy_p+ -+ Fypp g+ Fy ) = R(M), 2.9
and R(N*)=R(Fy_y+ -+ Fypppp g+ Fou g = Fpu s =)= R(M"). O

When we list the 2% values for R(N) for even-Zeck N in the interval F,, <N < F,, 1, the
corresponding values for N can be found by numbering the entries for R(N). For example,
in Table 2.1, 66 is the 7% entry in the interval Fjy < N <F,—1 (the 6@ entry after 55), and
6=2+2" corresponds to Fy,,;+ Fyy,yy; Zeck 66 = Fig+ F+F,. If R(N) is the m™ entry in
the interval F,, SN <FE,,, -1, and if (m-1)=27+...4+2", then the associated even-Zeck
integer N has Zeck N = F, + Fyp) + -+ + Fy,,.y). Further, the list is palindromic; the m™ entry
for R(N) equals the (27! —m)® entry.

Since 4, is an even-Zeck integer when p is prime, B, = 4, for prime p, and B, 2 4, for all
nz1. The first occurrences of R(N) in Table 2.1 give us {B,} ={1,3,8,21,24, ,58,63,...},
where B is as yet unknown. Table 2.2 lists the first 89 values for {B,}, from computation of
R(N) for even-Zeck N, 1< N < F,.

TABLE 2.2. B, for1<n<89
n B n B, n B n B

I 1 23" 1011 45 3134 67" 7166
2" 3 24 1063 46" 2990 68 7221
3 8 25 1053 47 2752 69" 7200
4 21 26 1045 48 6975 70 8158
5 24 27" 1066 49" 2983 7" 7310
6 144 28 2608 50" 3019 72 18719
7 58 29" 1050 51 6930 73" 7831
& 63 30 1139 52 6917 74" 8187
9 147 3 1160 53" 6967 75 7954
10 155 32 2650 54 19298 76" 7205
11" 152 33 2642 55" 3024 77 18295
12 173 34" 1155 56 7163 78 18164
13° 168 35 2663 57 6972 79" 7815
14 385 36 2807 58 7297 8 7959
15 398 37" 2647 59° 7349 81" 7925
16 461 38 6841 60 6933 82 18918
17 406 39 2969 61" 7218 83" 18154
18" 401 40 2749 62 7836 84 18240
19* 435 4 2736 63 7171 85 18112
20 1215 42 7145 64 7315 86 19083
21" 440 43" 2757 65 7208 &7 18167
22 1016 44 2791 66 7899 88 18146
89" 7920
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In Table 2.2, * denotes B, = 4,, which is always true for n= F, or L, and when 7 is prime.
However, while we can have B, = 4, when n is composite, the most irregularly occurring values
for B, are when » is even.

Theorem 2.2: The following special values for n have 4, = B, :
n=Fy B,=Fy+Fy +Fys+Fy pt, k22 (2.5)
n=Lyy B,=Fy+Fys+tFp 0+ Fpoat, k23 (2.6)

Proof: A, has the above values for the given values of » from [1]. Since in these two cases
A, is an even-Zeck integer, 4,=B,. O

From computation of the first 610 values for B,, it appears that if Zeck »n begins with F,, that
is, F, <n<F,,,, then Zeck B, begins with F;, F,,.,, or F,,,; this has not been proved. How-
ever, F,,; is the largest value for R(M/) in the interval F,,, < M < F,,.,,, and all other values for
R(M) which appear in that interval have Zeck » beginning with F,, or a smaller Fibonacci num-
ber. Note that we are relating » and B, in an interesting way, since the subscripts in Zeck N are
used to compute R(N).

3. PROPERTIES OF {B,}

Theorem 3.1: If N is an even-Zeck integer such that 5, < N < Ey;,,, and if M = F2, -1, then
the three largest values occurring for R(X) are:

R(N)=n N=B,

Fien M=F2 -1, k22 G.1

Fran=Fia M+5-1, k26 (32

FBep—F_4—Fg M+39(-1)*, k=9. 3.3)
For even-Zeck N in this interval, the following values for R(N) do not occur:

R(N)=F-p, 1SpsF_4+F_g-1 k29, (3.4

except for p = F,_,. In particular,

R(N)=Fpy -1, k27,
is a missing value.

Proof: From [1], M is the smallest integer having F,,, Fibonacci representations; Zeck M
appears in (2.5). Tables for R(N) show palindromic behavior within each interval for N as well
as "peaks" containing clusters of values where N = B,. The "peak value" is the sum of two adja-
cent values for R(M) at the "peak” of the preceding interval F,_, < M < F,_; from the forma-
tion of the table for R(N).

Table 3.1 exhibits behavior near the primary peak value R(N) = F;, for the interval

Fu+ B4 SN <Fy+Fy .

Recalling (2.1), when Zeck N ends in F,, 2 F,, R(N) = R(N +1)+ R(N"), where N* is the even-
Zeck integer preceding N. Since we are looking at consecutive even-Zeck N in Table 3.1, the
formula for each value of R(N) can be proved by induction, &k > 6.
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TABLE 3.1. R(N) for Even-Zeck N, Fo, + Fyy 4 <N <Fy +Fy ;3
kodd: M=Fly—1=Fy+Fy 4+ Fy+Fo+F

R(N) N Zeck N ends with:

F+F_, M-8 . +F,+F,

L, M-7 L +E,+F,+E
N=B, F,-F_, M-5 ..+F+F,+F

F,_, M-4 L +F,+F,+F+F,
N=B, E, M ot B+ Ry + I

F, M+1 R +F +F+E

L, M+3 . +F,+F,+F+F,

F._, M+4 . AF,+F,+F+F,+F,

Foa-L,_, M+13 . +F,+F,+K

keven: M=F,—1=Fy+Fy 4+ +F+F{+F,

R(N) N Zeck N ends with:
Fon—-Ly, M-13 ..+F,+FK+F,
F_, M-12 . +F,+F+F,+F
L, M-3 . +F,+K
F, M-2 . +F,+K+F
N=B, F,_, M et F,+ K+ F,
F,_, M+l L +F,+E+F+F
N=B, F,,-F_, M+5 . +F,+FK+F
L, M+6 . +F,+K+F+F
F+F_ s M+8 . +F,+FK+F+F

E,_, M+9 [ +F,+E+F+F+F

We show that R(N)= B, for n=F,,, - F,_, because we cannot get the same result for a
smaller N. In Table 3.1, Nis in the interval Fy + Fy,_, < N <F,, +F,,_5. To have R(N)=F,,, -
F,_, for a smaller N, we must have F,, < N < F,, + F,,_,. From (2.6), L,_, is the largest value
for R(N) for even-Zeck N in the interval Fy, + Fy,_¢< N <Fy, +Fy,_,, where [;,_=F, +F,_, <
Foa—-F _4s=F+F_,+F_s,s0 R(N)=F,,, - F,_, cannot occur for N <F,, + F,,_,, establish-
ing (3.2). Equation (3.3) follows in a similar manner. O

Corollary 3.1.1: Forn=F, ;- F,_, asin Theorem 3.1, 4,=B, for k >7.

When N is any positive integer, R(N) displays "peak" values near R(N) = F,,, similar to
those listed in Table 3.1 for even-Zeck integers N. The three largest values for R(N), when N is
any positive integer, Fy, <N <F,,,,, are F,, F,,,—F_s=4F,_,, and F,,-F,_,. When n=
4F,_,, A,=M+8(-)*"! for M =F%,—1. The values for R(N)=F,,,—p, 1<p<F,_-1,
k > 6, are missing for  in that interval.

A similar "secondary peak" in the lists for R(N) clusters around Z,_,, both for N any positive
integer and for N an even-Zeck integer; hence, Theorem 3.2.
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Theorem 3.2: If M = Fy, +Fyy_g+Fyy_1g++= Fy, + F2,~1, then when

n=1L,, B,=M, ks (3.5)
n=L_,-L B,=M+5(-0F1 k=7, (3.6)

Corollary 3.2.1: Forn=1IL, ~ L, ;asinTheorem3.2, 4, =B, for k=9,

4. UNANSWERED QUESTIONS

Theorem 3.1 shows some values for R(N) that are missing within each interval for even-
Zeck N, Fy, <N <Fy,,, £29. In what interval will those "missing values” first appear? The
value n=R(N) always occurs for some even-Zeck N, since, in the worst case scenario, n=
R(F,,). But whenis {B,} complete?

Conjecture 3.1.3: If R(N) is calculated for all even-Zeck N, N < F,, .5, then {B,} is complete
forisnsF,. U F <n<F,,, then Iy, <B, <Fy,.

Finding the least integer having p Fibonacci representations, p prime, is an unsolved problem.
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