THE LEAST INTEGER HAVING *p* FIBONACCI REPRESENTATIONS, *p* PRIME

Marjorie Bicknell-Johnson

665 Fairlane Avenue, Santa Clara, CA 95051 (Submitted April 2000-Final Revision September 2000)

1. INTRODUCTION

Given a positive integer N, a representation of N as a sum of distinct Fibonacci numbers in descending order is a Fibonacci representation of N. Let R(N) be the number of Fibonacci representations of N. For example, R(58) = 7, since 58 can be written as:

Any positive integer N can be represented uniquely as the sum of distinct, nonconsecutive Fibonacci numbers; this representation is the Zeckendorf representation of N, denoted Zeck N. In particular, Zeck $58 = 55 + 3 = F_{10} + F_4$, in subscript notation.

The subscripts of the Fibonacci numbers appearing in Zeck N allow calculation of R(N) by using reduction formulas [3], [4]. If Zeck $N = F_{n+k} + K$, where $K = F_n + \dots + F_t < F_{n+1}$, then

$$R(N) = R(F_{n+2q} + K) = qR(K) + R(F_{n+1} - K - 2), \quad k = 2q, \tag{1.1}$$

$$R(N) = R(F_{n+2q+1} + K) = (q+1)R(K), \quad k = 2q+1.$$
(1.2)

Further, subscripts in Zeck N can be shifted downward c to calculate R(N-1),

$$R(N-1) = R(F_{n+k-c} + F_{n-c} + \dots + F_{t-c} - 1), \quad t \ge c+2.$$
(1.3)

Lastly, tables for R(N) contain palindromic lists. For N within successive intervals $F_n \le N \le F_{n+1}-2$, the values for R(N) satisfy the symmetric property

$$R(F_{n+1} - 2 - M) = R(F_n + M), \ 0 \le M \le F_{n-1}, \ n \ge 3.$$
(1.4)

The table for R(N) repeats patterns within intervals and subintervals although with increasingly larger values; indeed, R(N) appears fractal in nature. What interests us, however, is the inverse problem: Given a value *n*, write an integer N such that R(N) = n or, most interesting of all, find the least N having exactly *n* representations as sums of distinct Fibonacci numbers.

Let A_n be the least positive integer having exactly *n* Fibonacci representations. Then $\{A_n\} = \{1, 3, 8, 16, 24, 37, 58, 63, ...\}$, but while the first 330 values for A_n are listed in [6], A_n is given by formula only for special values of *n*. However, when *p* is prime, all Fibonacci numbers used in Zeck A_p have even subscripts. The sequence $\{B_n\}$ of the next section arises from an attempt to make sense of $\{A_n\}$ when n = p is prime.

2. EVEN-ZECK INTEGERS AND THE BOUNDING SEQUENCE $\{B_n\}$

If an integer N has a prime number of Fibonacci representations, then the subscripts of the Fibonacci numbers appearing in Zeck N have the same parity. Since $R(F_{2k+1}) = R(F_{2k})$, we

[JUNE-JULY

260

concentrate upon even subscripts. We will call a positive integer whose Zeckendorf representation contains only even-subscripted Fibonacci numbers an *even-Zeck integer*.

Here we study a bounding sequence $\{B_n\}$, where $B_n \ge A_n$, $n \ge 1$. We let B_n be the least even-Zeck integer having exactly *n* Fibonacci representations. Note that $A_n = B_n$ whenever A_n is an even-Zeck integer.

We begin by listing even-Zeck N and computing R(N) for N in our restricted domain. In Table 2.1, we underline the first occurrence of each value for R(N) and list subscripts only for Zeck N. Notice that 2^k integers N have Zeck N beginning with $F_{2(k+1)}$. For N in the interval $F_{2k} \le N \le F_{2k+1} - 2$, R(N) takes on values in a palindromic list which begins with $k = R(F_{2k})$ and ends with $k = R(F_{2k+1} - 2)$, with central value 2. Interestingly, every third entry for R(N) is even.

TABLE 2.1. R(N) for Even-Zeck N, $1 \le N \le 88$

R(N)	N	Zeck N	R(N)	Ν	Zeck N
1	1	2	5	55	10
2	3	4	4	56	10,2
1	4	4,2	7	<u>58</u>	10,4
3	8	6	3	59	10, 4, 2
2	9	6,2	8	<u>63</u>	10,6
3	11	6,4	5	64	10,6,2
1	12	6,4,2	7	66	10,6,4
4	21	8	2	67	10,6,4,2
3	22	8,2	7	76	10,8
5	24	8,4	5	77	10,8,2
2	25	8, 4, 2	8	79	10,8,4
5	29	8,6	3	80	10,8,4,2
3	30	8,6,2	7	84	10,8,6
4	32	8, 6, 4	4	85	10,8,6,2
1	33	8, 6, 4, 2	5	87	10,8,6,4
			1	88	10, 8, 6, 4, 2

In Table 2.1, the listed values for R(N) for $N = F_{10} + K$ can be obtained by writing the values (1), 4, 3, 5, 2, ..., from R(N) for $N = F_8 + K$, interspersed with their sums: (1), 5, 4, 7, 3, 8, 5, 7, 2, ..., the first half of the palindromic sequence of R(N) values for $N = F_{10} + K$, where, of course, the second half repeats. The first (1) arises from $R(F_l - 1) = 1$, $t \ge 1$; the algorithm computes R(N) for even-Zeck N in the interval $F_{2k} \le N \le F_{2k+1} - 1$, using values obtained from the preceding interval for N.

Theorem 2.1: If N is an even-Zeck integer such that Zeck N ends in F_{2c} , $c \ge 2$, $F_{2k} \le N \le F_{2k+1} - 1$, and N^* is the even-Zeck integer preceding N, then

$$R(N) = R(N+1) + R(N^*).$$
(2.1)

Further, R(N+1) = R(M) and $R(N^*) = R(M^*)$, where M^* is the even-Zeck integer preceding M in the interval $F_{2k-2} \le M \le F_{2k-1} - 1$.

Proof: We will use (1.3) to shift subscripts in computing R(N+1) and $R(N^*)$. If $N = F_{2k} + \cdots + F_{2c+2p} + F_{2c}$, $c \ge 2$, then the even-Zeck integer preceding N is

$$N^* = F_{2k} + \dots + F_{2c+2p} + (F_{2c-2} + \dots + F_4 + F_2)$$

= $F_{2k} + \dots + F_{2n+2p} + (F_{2c-1} - 1)$
= $N - F_{2c} + F_{2c-1} - 1 = N - F_{2c-2} - 1.$ (2.2)

2002]

261

While (N-1) is not an even-Zeck integer, we can apply (1.3) to shift each subscript down (2c-2) to obtain an even-Zeck integer,

$$R(N-1) = R(F_{2k} + \dots + F_{2c+2p} + F_{2c} - 1) = R(F_{2k-2c+2} + \dots + F_{2c+2p-2c+2} + F_{2c-2c+2} - 1)$$

= $R(F_{2k-2c+2} + \dots + F_{2p+2} + F_2 - 1) = R(F_{2k-2c+2} + \dots + F_{2p+2}) = R(K),$ (2.3)

where K is an even-Zeck integer. Similarly, shifting subscripts down 2c-2 in (2.2), we obtain $R(N^*) = R(N-1)$. From [3], R(N) = R(N+1) + R(N-1) for any integer N such that Zeck N ends in F_{2c} , $c \ge 2$. The rest of Theorem 2.1 follows from similar subscript reductions, so that

 $R(N+1) = R(F_{2k-2} + \dots + F_{2c+2p-2} + F_{2c-2}) = R(M),$ (2.4)

and $R(N^*) = R(F_{2k-2} + \dots + F_{2c+2p-2} + F_{2c-2} - F_{2c-4} - 1) = R(M^*).$

When we list the 2^k values for R(N) for even-Zeck N in the interval $F_{2k} \le N \le F_{2k+1} - 1$, the corresponding values for N can be found by numbering the entries for R(N). For example, in Table 2.1, 66 is the 7th entry in the interval $F_{10} \le N \le F_{11} - 1$ (the 6th entry after 55), and $6 = 2^2 + 2^1$ corresponds to $F_{2(2+1)} + F_{2(1+1)}$; Zeck $66 = F_{10} + F_6 + F_4$. If R(N) is the mth entry in the interval $F_{2k} \le N \le F_{2k+1} - 1$, and if $(m-1) = 2^p + \cdots + 2^w$, then the associated even-Zeck integer N has Zeck $N = F_{2k} + F_{2(p+1)} + \cdots + F_{2(w+1)}$. Further, the list is palindromic; the mth entry for R(N) equals the $(2^{k-1} - m)^{th}$ entry.

Since A_p is an even-Zeck integer when p is prime, $B_p = A_p$ for prime p, and $B_n \ge A_n$ for all $n \ge 1$. The first occurrences of R(N) in Table 2.1 give us $\{B_n\} = \{1, 3, 8, 21, 24, _, 58, 63, ...\}$, where B_6 is as yet unknown. Table 2.2 lists the first 89 values for $\{B_n\}$, from computation of R(N) for even-Zeck N, $1 \le N < F_{23}$.

TABLE 2.2. B_n for $1 \le n \le 89$

n	B _n	n	B _n	n	B _n	n	B_n
*	1	23*	1011	45	3134	67*	7166
2*	3	24	1063	46*	2990	68	7221
3*	8	25	1053	47*	2752	69*	7200
1	21	26	1045	48	6975	70	8158
5*	24	27*	1066	49*	2985	71*	7310
5	144	28	2608	50*	3019	72	18719
7*	58	29*	1050	51	6930	73*	7831
3*	63	30	1139	52	6917	74*	8187
9	147	31*	1160	53*	6967	75	7954
10	155	32	2650	54	19298	76*	7205
11	152	33	2642	55*	3024	77	18295
12	173	34*	1155	56	7163	78	18164
13*	168	35	2663	57	6972	79*	7815
14	385	36	2807	58	7297	80	7959
15	398	37*	2647	59*	7349	81*	7925
16	461	38	6841	60	6933	82	18918
17*	406	39	2969	61*	7218	83*	18154
18*	401	40	2749	62	7836	84	18240
19*	435	41 *	2736	63	7171	85	18112
20	1215	42	7145	64	7315	86	19083
21*	440	43*	2757	65	7208	87	18167
22	1016	44	2791	66	7899	88	18146
						80*	7020

In Table 2.2, * denotes $B_n = A_n$, which is always true for $n = F_k$ or L_k , and when n is prime. However, while we can have $B_n = A_n$ when n is composite, the most irregularly occurring values for B_n are when *n* is even.

Theorem 2.2: The following special values for *n* have $A_n = B_n$:

D()D ...

$$n = F_{k+1} \quad B_n = F_{2k} + F_{2k-4} + F_{2k-8} + F_{2k-12} + \cdots, \quad k \ge 2;$$

$$(2.5)$$

$$n = L_{k-1} \quad B_n = F_{2k} + F_{2k-6} + F_{2k-10} + F_{2k-14} + \cdots, \quad k \ge 3.$$
(2.6)

Proof: A_n has the above values for the given values of n from [1]. Since in these two cases A_n is an even-Zeck integer, $A_n = B_n$. \Box

From computation of the first 610 values for B_n , it appears that if Zeck *n* begins with F_k , that is, $F_k < n < F_{k+1}$, then Zeck B_n begins with F_{2k} , F_{2k+2} , or F_{2k+4} ; this has not been proved. However, F_{m+1} is the largest value for R(M) in the interval $F_{2m} \le M \le F_{2m+1}$, and all other values for R(M) which appear in that interval have Zeck n beginning with F_m or a smaller Fibonacci number. Note that we are relating n and B_n in an interesting way, since the subscripts in Zeck N are used to compute R(N).

3. PROPERTIES OF $\{B_n\}$

Theorem 3.1: If N is an even-Zeck integer such that $F_{2k} \leq N < F_{2k+1}$, and if $M = F_{k+1}^2 - 1$, then the three largest values occurring for R(N) are:

$$R(N) = n N = B_n$$

$$F_{k+1} M = F_{k+1}^2 - 1, k \ge 2; (3.1)$$

$$F_{k+1} M = F_{k+1}^2 - 1, k \ge 2; (3.1)$$

$$F_{k+1} - F_{k-4} M + 5(-1)^k, k \ge 6; (3.2)$$

$$F_{k+1} - F_{k-4} - F_{k-8} \qquad M + 39(-1)^k, \quad k \ge 9.$$
 (3.3)

For even-Zeck N in this interval, the following values for R(N) do not occur:

$$R(N) = F_{k+1} - p, \ 1 \le p \le F_{k-4} + F_{k-8} - 1, \ k \ge 9,$$
(3.4)

except for $p = F_{k-4}$. In particular,

$$R(N) = F_{k+1} - 1, \ k \ge 7,$$

is a missing value.

Proof: From [1], M is the smallest integer having F_{k+1} Fibonacci representations; Zeck M appears in (2.5). Tables for R(N) show palindromic behavior within each interval for N as well as "peaks" containing clusters of values where $N = B_n$. The "peak value" is the sum of two adjacent values for R(M) at the "peak" of the preceding interval $F_{2k-2} \leq M < F_{2k-1}$ from the formation of the table for R(N).

Table 3.1 exhibits behavior near the primary peak value $R(N) = F_{k+1}$ for the interval

$$F_{2k} + F_{2k-4} \le N < F_{2k} + F_{2k-3}.$$

Recalling (2.1), when Zeck N ends in $F_{2c} \ge F_4$, $R(N) = R(N+1) + R(N^*)$, where N* is the even-Zeck integer preceding N. Since we are looking at consecutive even-Zeck N in Table 3.1, the formula for each value of R(N) can be proved by induction, $k \ge 6$.

2002]

263

TABLE 3.1. R(N) for Even-Zeck N, $F_{2k} + F_{2k-4} \le N < F_{2k} + F_{2k-3}$

k odd:	$M = F_{k+1}^2 -$	$-1 = F_{2k}$	$F_{2k-4} + \cdots F_{14} + F_{10} + F_6$	
	R(N)	Ν	Zeck N ends with:	
			•••	
	$F_k + F_{k-5}$	M-8	$\dots + F_{14} + F_{10}$	
	L_{k-2}	M-7	$\dots + F_{14} + F_{10} + F_2$	
$N = B_n$	$F_{k+1} - F_{k-4}$	M-5	$\dots + F_{14} + F_{10} + F_4$	
	F_{k-1}	M-4	$\dots + F_{14} + F_{10} + F_4 + F_2$	
$N = B_n$	F_{k+1}	M	$\dots + F_{14} + F_{10} + F_6$	
	F_k	M + 1	$\dots + F_{14} + F_{10} + F_6 + F_2$	
	L_{k-1}	<i>M</i> +3	$\dots + F_{14} + F_{10} + F_6 + F_4$	
	F_{k-2}	M+4	$\dots + F_{14} + F_{10} + F_6 + F_4 + F_2$	
	$F_{k+1} - L_{k-4}$	<i>M</i> + 13	$\dots + F_{14} + F_{10} + F_8$	

k even: $M = F_{k+1}^2 - 1 = F_{2k} + F_{2k-4} + \dots + F_{12} + F_8 + F_4$

We show that $R(N) = B_n$ for $n = F_{k+1} - F_{k-4}$ because we cannot get the same result for a smaller N. In Table 3.1, N is in the interval $F_{2k} + F_{2k-4} < N < F_{2k} + F_{2k-3}$. To have $R(N) = F_{k+1} - F_{k-4}$ for a smaller N, we must have $F_{2k} < N < F_{2k} + F_{2k-4}$. From (2.6), L_{k-1} is the largest value for R(N) for even-Zeck N in the interval $F_{2k} + F_{2k-6} < N < F_{2k} + F_{2k-4}$, where $L_{k-1} = F_k + F_{k-2} < F_{k+1} - F_{k-4} = F_k + F_{k-2} + F_{k-5}$, so $R(N) = F_{k+1} - F_{k-4}$ cannot occur for $N < F_{2k} + F_{2k-4}$, establishing (3.2). Equation (3.3) follows in a similar manner. \Box

Corollary 3.1.1: For $n = F_{k+1} - F_{k-4}$ as in Theorem 3.1, $A_n = B_n$ for $k \ge 7$.

When N is any positive integer, R(N) displays "peak" values near $R(N) = F_{k+1}$ similar to those listed in Table 3.1 for even-Zeck integers N. The three largest values for R(N), when N is any positive integer, $F_{2k} \le N < F_{2k+1}$, are F_{k+1} , $F_{k+1} - F_{k-5} = 4F_{k-2}$, and $F_{k+1} - F_{k-4}$. When $n = 4F_{k-2}$, $A_n = M + 8(-1)^{k+1}$ for $M = F_{k+1}^2 - 1$. The values for $R(N) = F_{k+1} - p$, $1 \le p \le F_{k-5} - 1$, $k \ge 6$, are missing for N in that interval.

A similar "secondary peak" in the lists for R(N) clusters around L_{k-1} , both for N any positive integer and for N an even-Zeck integer; hence, Theorem 3.2.

Theorem 3.2: If $M = F_{2k} + F_{2k-6} + F_{2k-10} + \dots = F_{2k} + F_{k-2}^2 - 1$, then when

$$n = L_{k-1}$$
 $B_n = M$, $k \ge 5$; (3.5)

 $n = L_{k-1} - L_{k-6}$ $B_n = M + 5(-1)^{k-1}, \quad k \ge 7;$ (3.6)

$$n = L_{k-1} - L_{k-6} - L_{k-10} \qquad B_n = M + 39(-1)^{k-1}, \ k \ge 11.$$
(3.7)

Corollary 3.2.1: For $n = L_{k-1} - L_{k-6}$ as in Theorem 3.2, $A_n = B_n$ for $k \ge 9$.

4. UNANSWERED QUESTIONS

Theorem 3.1 shows some values for R(N) that are missing within each interval for even-Zeck N, $F_{2k} \le N < F_{2k+1}$, $k \ge 9$. In what interval will those "missing values" first appear? The value n = R(N) always occurs for some even-Zeck N, since, in the worst case scenario, $n = R(F_{2n})$. But when is $\{B_n\}$ complete?

Conjecture 3.1.3: If R(N) is calculated for all even-Zeck N, $N < F_{2k+5}$, then $\{B_n\}$ is complete for $1 \le n \le F_k$. If $F_k < n < F_{k+1}$, then $F_{2k} < B_n < F_{2k+5}$.

Finding the least integer having p Fibonacci representations, p prime, is an unsolved problem.

REFERENCES

- M. Bicknell-Johnson. "The Smallest Positive Integer having F_k Representations as Sums of Distinct Fibonacci Numbers." In Applications of Fibonacci Numbers 8:47-52. Dordrecht: Kluwer, 1999.
- M. Bicknell-Johnson. "The Zeckendorf-Wythoff Array Applied to Counting the Number of Representations of N as Sums of Distinct Fibonacci Numbers." In Applications of Fibonacci Numbers 8:53-60. Dordrecht: Kluwer, 1999.
- M. Bicknell-Johnson & D. C. Fielder. "The Number of Representations of N Using Distinct Fibonacci Numbers, Counted by Recursive Formulas." The Fibonacci Quarterly 37.1(1999): 47-60.
- 4. L. Carlitz. "Fibonacci Representations." The Fibonacci Quarterly 6.4 (1968):193-220.
- 5. D. A. Englund. "An Algorithm for Determining R(N) from the Subscripts of the Zeckendorf Representation of N." The Fibonacci Quarterly **39.3** (2001):250-52.
- 6. D. C. Fielder & M. Bicknell-Johnson. "The First 330 Terms of Sequence A013583." *The Fibonacci Quarterly* **39.1** (2001):75-84.

AMS Classification Numbers: 11B39, 11B37, 11Y55

^{949 949 949}