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1. INTRODUCTION 

Let tan x = aQ + axx+a2x2 + a3x3 + • • •. We know, of course, that a2n = 0 for al! n. Define a 
sequence An via 

We have the following table: 

n 

k 
1 

1 

2 

1 

3 

2 

4 

3 

5 

5 

6 

8 

7 

13-2-
1 J 45 

8 

21-1-

9 

34I6Z 

10 

5 6 f 

At the 1999 MAA North Central Section Summer Seminar Sylvan Burgstahler posed the 
following question. 
Question 1: Why is An approximately equal to a Fibonacci number? 

In discussing this problem with the author, Dr. Burgstahler posed two more questions. 

Question 2: If a7 is changed from •— to j™ = ~ j , then A7 becomes 13 and A% becomes 21, but 
the new A9 is 33|™ rather than 34. If we then change a9 from •—§5- to -J™ ~-™, • A9 and Am 

change to the appropriate Fibonacci numbers, but An remains incorrect. Does this pattern of 
obtaining two additional Fibonacci numbers for each correction persist? 

More generally, 
Question 3: Suppose that f(x) = btx-¥h3x3 +b5x5 + • • • is such that 

2k<n V / 2k<n 

what can be said about the ¥$, and what can be said about / (*)? 

In this paper we attempt to answer these questions. The first is straightforward, but the 
second and third are more interesting. The structure of this paper is as follows. In Section 2 we 
derive a formula for An that explains its proximity to the Fibonacci numbers. In Section 3 we 
recast this problem as a summation inversion problem to answer Question 2 and part of Question 
3. We address the rest of Question 3 in Section 4. Throughout this paper we use the convention 
that F0 = 0, Ft = l, a is the golden ratio, 

a = _ _ and fi = ——. 

We will make free use of the usual facts, e.g., a+fi = l9 afi = -l. 
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2. A FORMULA FOR THE NUMBERS AH 

It Is well known ([1], formula 4, p. 51) that the coefficients of tanx can be written explicitly 
ie terms of Bernoulli numbers: 

where B2n Is the In^ Bernoulli number. The Bernoulli numbers are defined by the generating 
function ([1], formula 1, p. 35) 

°o n 

^rS4^'' (2-2) 
and have values 1, - j , ~, 0, - ^ , 0, ^-, 0, —^, 0, -g|, ... . They satisfy many identities including 
the recurrence ([1], formula 18, p. 38) 

and series formulas 

These last two formulas can be found in most books of mathematical tables. Alternatively, (2.3) 
can be found in [1] (formula 22, p. 38) or in [2] (Vol. II, formula 2.60, p. 60). It is easy to derive 
(2.4) from (2.3). 

Using (2.1) and (2.4) with (1.1), we have 

- Y (n\ nk22k+2(22k+l-i) n t 2(2£ + 2)! ( 1 1 
~2k<nV-k) (2*+ 2)1 (22k+2-l)x2k+2{ 32k+2 +52k+2 

so 

^ ~ ** 2fe, 5 w (y+1)2**2*2* • (2-5) 

Now consider the function 

2Jfc<n V / 
It is easy to see that 

/ ^ ) = ( 1 + X)" + ( 1 - X )
2 " - ( 1 + ( - 1 ) " K . (2.7) 
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Interchanging the order of summation in (2.5), we have 

^ J i /o ; , i\2 Jn xiP>{2j + TfJ\{2j + \)x)' 
or 

4 - 4 £ ^ ^ftQj + Xf (2/ + 1K i + ^ ^ _ r + f i 2 
(2j + l)/r 

-(! + (-!)-) (2./ + 1)* 

For example, 

1 _ ^ 2 

00 . 

**£S(2./ + 1): 
i + ^ A ^ l + ( i - 2 

^ {2j + \)n) \ (2j + \)n 

;r2l 32 52 J ^ 8 
and 

4 . = 4 i ^ t?%>(2j + Vf 
1 + (2y + l)^ + 1 -(27+ 1)^; l(2j' + l)«-

*2£0(2;+i)2 • 
With formula (2.8) for 4> the main term is where j = 0. This gives 

A = - 1 i+rT+fi-^T-o+(-i)n)(fJ ;r /r •*BJ-
For example, letting 

consider the expanded table 
o*BJ-

Finally, 

whereas 

(2.8) 

^ 
F» 
A 
c„ 

l 
l 
I 

.66 

2 
1 
1 

1.09 

3 
2 
2 
1.8 

4 
3 
3 

2.91 

5 
5 
5 

4.76 

6 
8 
8 

7.79 

7 
13 

13.04 
12.75 

8 
21 

21.18 
20.86 

9 
34 

34.53 
34.14 

10 
55 

56.32 
55.88 

K = jz(<*"-fi") = ̂ ( ^ J =.447(1.618)", 

4 = - i f 1 + - Y =.405(1.637)". 

Thus, 4*/^w = .906(1.0115)w. Hence, for small n9 4 =K> although the A's grow exponentially 
faster than Fn in the long run. 

196 [JUNE-JULY 



THE BURGSTAHLER COINCIDENCE 

3. THE BURGSTAHLER PROBLEM AS AN INVERSION PROBLEM 

The real problem considered in this paper is the following: Find the sequence 62n+1 given that 

2k<n V ' 
_ u2k+\-

2k<ns 

This can be cast as a sum inversion problem: Given a known sequence {an}„=0> suppose a new 
sequence is defined by 

k 

for some given set of constants c^ky what can be said about the Vs in terms of the rfs? It must be 
pointed out that such a sequence of b'$ need not always exist. For example, if we attempt to 
define a sequence b2n+l by 

we find that there is no solution: Fl = bh F2 =bl + b3, F3 = ht-¥3b3 is an inconsistent system of 
three equations and two unknowns. Similarly, if we attempt to solve the system 

n=^[2k)b*^ 
2k<n V ' 

rather than the given one, we obtain l = bh 2 = bh and again there is no solution. In order to 
even ask Question 3 in the Introduction, we need 

2k<nx- / 
®2k+i 

to define a consistent system. In fact, as we will see, a proof that this system is consistent will 
give an affirmative answer to Question 2. 

Here is a standard technique (see [2], Vol. I, pp. 437, 438, or [3], formula 2.1.2, p. 28) for 
solving a class of inversion problems: Suppose that 

k 

where cl%k depends on only n-k9 say cn^k = cn_k. In this case an is a convolution of b„ and c„. 
Thus, passing to generating functions, with 

A(x) = ^a„x", B(x) = ftbnx", C(*) = i>„x", 
n-Q «=0 w=0 

we have A(x) = B(x)C(x). Hence, B(x) = C(x)-lA(x). 
We use this technique to solve the inversion problem 

n-\r \ 
(3.1) 

k=0s 

This expression only makes sense for n> 1; we extend it by setting a0 = 0. Dividing each side by 
n\ gives 
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"-1 i h 
kV n\ £o(»-*) ! 

Here, the n -1 in the upper limit introduces a complication. The cn in the convolution is 

[0, « = 0, 
C"{i, n>X. 

In this case, C(x) = e* - 1. Using exponential generating functions for an and iw, 

so 

Since A(0) = 0, we can write this as 

B(x) = -^—A(x). (3.2) 
e - 1 

2?(x) = - J - i . 4 ( x ) . 
r - l x 

Thus, the 68s will be a convolution of Bernoulli numbers with the afs. In particular, we have 

Theorem 3J: Suppose that sequences {aj and {hj are defined by 

Then 
4n~k+l• ^IK^i^-^K"*1)^ 

We next consider the specific case where an = Fn. In this case, A(x), the exponential gen-
erating function for the Fibonacci numbers is 

A(x) = -j-(eax-efix). 

Thus, we have 

e x - l V 5 V5 sinhx/2 
Since B(x) is an even fijnction, all the odd terms are zero. 

Theorem 3.2: If the sequence {cj is defined by 

then C2n+1 = 0 for all n. Consequently, 

^=l(iW (3-4) 
Moreover, 
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7k<n V / 2k<n 

has as its unique solution, xn = c^ for all n. 

Proof: The remarks preceding the theorem show that c2n+l = 0 for all n, which gives us 
(3.4). As a consequence, we know that the system in (3.5) has a solution of the form xn = c2n. 
That this is the only solution follows by induction on n, using 

/^ i =
2 tL(22*1) j % =S(22*1K 

or 

Corollary 3.3: The two systems of equations 

and 
F2n+2 

each have the same solution x„ = c2n for all n. 

Proof: Again, a solution xn = c2n exists to each of these systems and, by induction, each has 
a unique solution. 

Dr. Burgstahler's numbers b2n+l are now just c2n above. Combining Theorems 3.1 and 3.2, 
we have 

Theorem 3.4: The system of equations 

Fn= E(2i)*2*+i 
2k<ns 

is consistent and has a unique solution 
In 

\ Lfi-f-1 1 D 
r2n-k+l-^^^tffir^2' 

We are now in a position to answer Dr. Burgstahler's second question: as coefficients in tanx 
are changed one by one to the b2n+h each change corrects two terms to Fibonacci numbers. This 
is because of Corollary 3.3, which indicates that both F2n+t and F2n+2 can be expressed as sums 
involving,^, ft3, ..., b2n+l. 

4. CONCLUDING MEMAMKS 

We have not yet given a complete answer to Question 3. While we have given a formula 
for the terms of the sequence {b2nU}, we have not said anything about the function f(x) = bjx + 
b3x2 + b5xb + °-. 
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Theorem 4.1: The power series Z*=0 *2«+ix2w+i ^a s a radius of convergence of 0. 
Sketch of Proof: Suppose, by way of contradiction, that this is not the case. That is, sup-

pose that Z^=o^2n+ix2n+l converges to a function f(x), at least for \x\ <C for some constant 
C > 0. Then it may be shown that f(x) satisfies the functional equation 

in some neighborhood of the origin. Since 1 + x - x 2 = 0 at x = a, x = fi, this region must be a 
subset of the interval (/?, a). However, given a function/satisfying (4.1), if x = a is a pole for/, 
then so is -j™ = a or x = -^. Iterating this,/has a pole at each of the values x = j ^ 9 if it has a 
pole at a. In particular, for a = fi, this gives an increasing sequence of poles with 0 as its limit. 
As no convergent power series about the origin can have this property, we have a contradiction. 

Thus, the first part of Question 3 was slightly naive—there was no guarantee that such a 
function / ( x ) even existed; in fact, one does not. However, it was only by following the gener-
ating function approach above, and noting the problem of the poles that the author discovered this 
fact. 

One may ask about an exponential generating function for the sequence {b2n+l} rather than 
the ordinary generating function, of course. As a consequence of formula (3.3), this exponential 
generating function is 

Jo V5(e
f-i) Jo V5sinhf/2 

The integral is needed to correct the index from <̂ ,n to b2n+l. 
It is reasonable to ask when the system of equations 

2*<*A ' 
(4.2) 

is consistent. We have the following result. 

Theorem 4.2: The system in (4.2) is consistent if and only if the solution to the system 

~ ' " > * (4.3) 

satisfies the condition j 2 w + 1 = 0 for all n. In this case, the solution to (4.2) is given by xn = y2n for 
all 7t. 

Proof: If the solution to (4.3) satisfies the condition that y2n+l = 0 for all n9 then we obtain 
existence and uniqueness for solutions to (4.2) in exactly the same way as in Theorem 3.2. For 
the other direction, we assume that (4.2) has a solution and proceed in induction on n to show 
that in the solution to (4.3) all y2n+x are 0 and that y2n = xn for all n. To begin the induction, the 
equations ax = x0 and a2 = XQ show that to be consistent, we need at=a2. In this case, yQ = al9 

Jo + 2yi = #2 giy e s y\ = 0* Moreover, since x0 = ax, we have that x0 = y0. 
So, by way of induction, assume that, for 0 < k < n - 1 , y2M = 0 and xk - y2k. We have 
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2k<2n+l ^ ' k=Q 
and 

v f 2 « + A v ^ w + A a2nu = L{ 2k K* = £ ( 2^ J^fc-

Since y2k = % for al! £ < w, comparing these two expressions gives that y2n = xn. Now 

V [2n + 2] _<sr(2n + 2\ 
a2n+i- z- i 2k rk~M ik n 

2k<2n+2^ s k=Q\ / 
and 

«2»+2 - 2f(2nk%=if2*2)**+(2"+2)^+1 
force j 2 w + 1 to be 0. This completes the proof. 

We may now use generating function techniques to give more information. 

Corollary 43: The system in (4.2) is consistent if and only if the exponential generating function 
A(x) for {an} satisfies the functional equation 

A(x) = -exA(-x). (4.4) 

Proof: We may solve system (3.1) rather than (4.2). By formula (3.2), we have the relation 

where B(x) is the exponential generating function for the yn. By the previous theorem, B(x) 
must be an even function of x. Hence, 

1 A(rx) = -±-A(x), 
e~x-l 

from which the functional equation follows. 
The functional equation (4.4) does not place too heavy a restriction on sequences {an}. For 

example, if f(x) is any odd function, then -^/(x) will satisfy equation (4.4). We conclude with 
the following result. 

Theorem 4.4: If the sequence {an} satisfies a recurrence relation of the type an =ayi_l + can_2, 
where c is an arbitrary constant and a0 = 0, then system (4.2) is consistent. 

Proof: The case where c = 0 is trivial; the solution to the recurrence relation being just the 0 
sequence. Another special case is c = ~ , in which case one may check that 

an=n2~\ A(x) = ̂ ex/\ and B(x) = -
2 s x / 2e*-l 

In the cases where c & 0, ~ , any solution satisfying a0 - 0 will be of the form an = C(un-vn), 
where C is. a constant, and u + v = 1 (u and v being the solutions to x2 - x - c = 0). In this case, 
A(x) = C(eux-evx),so 
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-exA(-x) = -Cex(e~^ - iTw) = C(e(1~v)x - el~u)x) = C(e^ - era) = 4(x), 

so A(x) satisfies the required functional equation, completing the proof. 

As a very easy example, if c = 2, one may check that an - 2n ~{-tf produces a consistent 
system for (4.2). In this case, 

f 0, n odd, 
ba = 3 and b„ =« 

[2, weven?«>0. 
That this works can be independently checked using formulas (2.6) and (2.7). 
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