
CONVOLUTIONS FOR JACOBSTHAL-TYPE POLYNOMIALS 

A. F. Horadam 
The University of New England, Armidale, Australia 2351 
(Submitted March 2000-Final Revision November 2000) 

1. PRELIMINARIES 

Object of the Paper 
Basically, the purpose of this paper is to present data on convolution polynomials J^k\x) and 

jik\x) for Jacobsthal and Jacobsthal-Lucas polynomials Jn(x) and j„(x), respectively, and, more 
specifically, on the corresponding convolution numbers arising when x = l. 

Our information will roughly parallel and, therefore, should be compared with that offered for 
Pell and Pell-Lucas polynomials Pn(x) and Qn(x), respectively, in [7] and [8] in particular. 

Properties of Jn(x) and j„(x) may be found in [5] and [6, p. 138]. Originally J„(x) was 
investigated by the Norwegian mathematician Jacobsthal [9]. For ease of reference, it is thought 
desirable to reproduce a few essential features of Jn(x) and jn(x) in the next subsection. 

Background articles of relevance on convolutions which could be consulted with benefit are 
[1], [2], and [3]. But observe that in [3] the x has to be replaced by 2x for our J„(x). 

Convolution Arrays 
Convolution numbers, symbolized by Jj^(l) = J^k) and j*k\l) = fk\ where k represents the 

"order" of the convolution and n the sequence index, may be displayed in a convolution array 
(pattern). When k = 09 the ordinary Jacobsthal numbers jf® == Jn and the Jacobsthal-Lucas num-
bers j ^ 0 ) = j n are generated. 

Readers of [3, p. 401] will be aware that the w*-order convolution sequence for jffl appears 
there as columns of a matrix. As the convolution array for ffi does not seem to have been pre-
viously recorded, we shall disclose its details in Table 2. 

Mathematical Background 
Definitions 

JfHii*) = 4N-I(*) + 2xJ„(x), J0(x) = 0, Jx(x) = 1. (1.1) 
Jn+2(*) = Jn*l(x) + 2xf„(x)9 jQ(x) = 2, jx(x) =1 (1.2) 

For.0<«<10, Jn(x) and jn(x) are recorded in [6] in Tables 1 and 2, respectively, to which 
the reader is encouraged to refer. 

Special Cases 
x = l: Jacobsthal numbers /„(!) = Jn and Jacobsthal-Lucas numbers j„(l) = j n . 
x = ±: Jn(£j = Fn9 jn(j) = Ln (the /1th Fibonacci and Lucas numbers). 

It follows that Tables 1 and 2 in [6] with (1.1) and (1.2) thus generate the number sequences 
{JW(1)} = 0,1,1,3,5,11,21,43,..., (1.3) 

U(l)} = 2,1,5,7,17,31,65,127,.... (1.4) 
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Binet Forms 
From the characteristic equation A2 - A - 2x = 0 for both (1.1) and (1.2), we deduce the roots 

„ 1 + A Q 1-A „ cx 

so that 
a+p=\ afi = 2x, a - ^ = Vl + 8x=A. (1.6) 

Binei forms are thee 
./B(x) = ( a » - / H / A , (1-7) 

jn{x) = an+P". (1.8) 

Generating Functions 

X/„+ 1(x)J" = ( l - j - 2 r ) ; 2 r 1
> (1.9) 

CO 

Ei„+iW'Jw = a + 4xyXl-J-2xy2)-1. (1.10) 

An immediate consequence of (1.9) and (1.10) is 

Jw(x) = /w(x) + 4x^1(x)? (1.11) 

which is also quickly obtainable from (1.7) and (1.8). 
Jacobsthal convolution polynomials Jf^{x) are defined [see (4.9) and (4.9a)] from (1.9) by 

Z J&(x)y = 0 - y - 2xy2T(k+1)- (1.12) 

The corresponding Jacobsthal-Lucas convolution polynomials J^+i(x)j^ are defined in (5.7) 
and (5.7a) by means of (1.10). 

2. FIRST JACOBSTHAL CONVOLUTION POLYNOMIALS J$\x) 

Generating Function Definition 
00 

S^iC*)/ =(l-y-2xy2T2 (2.1) 
n=Q 

= f £ ^ + i W / ] by (1.9). (2.1a) 

Examples 
J?\x) = 1, JP(X) = 2, 4l)(x) = 3 + 4x, Jf\x) = 4 + \2x, 4»(x) = 5 + 24x + 12x2, 
«#>(*) = 6+4QX + 48*2, 41)(x) = 7 + 60x + 120x2+32x3,.... 

Special Cose (First Jacobsthal Convolution Numbers: x -1) 

{^1>(1)} = 1)2)7,16,41,94,219).... (2.3) 
Observe that this sequence of integers appears in the second column of the matrix in [3, 

p. 401]. 
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Recurrence Relations 
Immediately, from (1.9) and (2.1), we deduce the recurrence 

J$i(x) - 4H*) - 2xJ&(x) = J„+1(x). (2.4) 

By means of (2.4), the list of first convolution polynomials may be extended indefinitely. 
Partial differentiation with respect toy of both sides of (1.9) along with the equating of the 

coefficients of yn~l then yields, with (2.1), 

nJn+l(x) = Jil\x)+4xJJ,1}l(x). (2.5) 

Combine (2.4) with (2.5) to obtain the recurrence 

nJil(x) = (» + l)jJ1)(x) + 2^W + 2)J<?1(x). (2.6) 

Eliminate 4L\(x) from (2.4) and (2.5). Then 

(n + 2) Jn+l(x) = UiKx) - jW(x). (2.7) 

Add (2.5) to (2.7), whence 

(W + l)Jw+i(x) = J^1(x) + 2x8/«1(x). (2.8) 

Or, apply (2.9) below twice with reliance on (3.13), (3.12), and (1.2) in [6] and appeal to the 
(new) result, jn¥i(x) + 4xjn(x) = A2Jw+1(x) obtained from Binet forms (1.7) and (1.8) above. 

Other Main Properties 
Next, we are able to derive the revealing connective relation 

J < Q ( y ) = ^ i ( * ) + 4 ^ , ( * ) > ( 2 9 ) 

where A is given in (1.6). As a prelude to (2.9), we require the recursion 

njn+l(x) = (1-f 4x) j f (x) + 4x4i\(x) + 8x2J^2(x). (2.10) 

Establishing (2.10) merely asks us to differentiate (1.10) partially with respect to y, and then 
perform appropriate algebraic interpretations involving (2.1). Corresponding coefficients of yn~l 

are then equated. 

Ptoofsof(2.9): 
(a) Induction. The formula is verifiably valid for w = 1,2,3,4,5. Employing the induction 

method in conjunction with (2.4) leads us to the desired end. 
(b) Alternatively (cf. [8, p. 61, (4.7)]), algebraic manipulation in (2.1) gives 

V MM^ - a + ̂  + 4x>;-f8xV) + 4x(l-j;-2xy2) 
hrWy " (l^x)(l~y~2xyy 

= l ^ Z C ^ i W + ̂ x / ^ x ) ) ^ 1 by (1.9), (1.10), (2.10). 

Compare coefficients of yn and (2.9) ensues. 
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Observe that a Binet form may be deduced for Jjp(x) from (2.9) by means of (1.7) and (1.8). 
Worth noting in passing is that by combining.(1.1) and [6, (3.12)] we may express the numerator 
of the right-hand side of (2.9) neatly as (n + l)jn+l(x)-Jn+l(x). 

Explicit Combinatorial Form 
Theorem 1: 

41 }W= Z (V)("""r ~l)(2xY (c losedform)- C2-11) 
Proof (by Induction): Using (2.2), we readily verify-that the theorem is true for all « = 1, 2, 

3. Assume it is true for all n < TV", that is, 

Assumption: yg>(x)= £ ^ i ' ) ^ " ? ^ 2 * ) ' . (A> 

Then the right-hand side of (2.6) becomes 
N( J$(x)+2x4>_1(x)) + (4\x) + 4x4lt(x)) 

= Nfl(N-r)(N;r\2xy + N$t (N;r\2xY from (A), onsimplifying 
r=0 V ' r = 0 V / 

[f] 
= ^ I ( ^ - r + l ) p - r l ( 2 x ) ' - (B) 

= W&i(*), ( Q 
which must be the left-hand side of (2.6). 

Consequently, (B) and (C) with (A) show that (2.11) is true for n = N +1 and thus for all n. 
Hence, Theorem 1 is completely demonstrated. 

Remarks: Recourse is required in the proof to the use of 
(I) N even, N odd considered separately (for convenience), 

(U) Pascal's Formula, and 
(Hi) the combinatorial result (readily computable) 

( J f - r ^ - ^ - r ) ^ 1 ) ^ ^ } (2-ll«) 
Summation 

From (2.4) and [6, (3.7)], 

X J?\x) = ^ x ) " f r W + 1, (2.12) 

Expatnding the right-hand side of (2.1a), both sides having lower bound #i = 1, and equating 
coefficients, we arrive at 
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4Hx)- 2z[ijr(x)J„-r+l(x) "even, 

2 sU2iJ W ^ i W + J L . (*) » odd. 

Differentiation and Convolutions 
Let the prime (') represent partial differentiation with respect to x. Differentiate both sides 

of (1.9) with respect to x. Compare this with (2.1). Then, on equating coefficients of yn~l, we 
deduce the notably succinct connection 

2J^(x) = JUx). (2.14) 
But fn(x) = 2nJn_x(x) by [6, (3.21)]. Hence, the second derivative is 

m) = 4nJ%{x). (2.15) 

3. FIRST JACOBSTHAL-LUCAS CONVOLUTION POLYNOMIALS £\x) 

Generating Function Definition 

ILMM? =(l + 4xyf(l-y-2xy2r2 (3.1) 

S i r + i W / by (1.10). (3.1a) 
,r=0 ) 

w=0 
f co \ 2 

Vr=0 
J5xii#ffpfe.s; 

# ( * ) = !, ^1)(x) = 2 + 8x, # ( x ) = 3 + 20x + 16x2, # ( x ) = 4 + 36x + 64x2, 
ja)(x) = 5 + 56x + 156x2 + 64x3, £\x) = 6 + 80x + 3Q4x2 + 228x3,.... 

Special Case (First Jacobsthal-Lucas Convolution Numbers: x = 1) 

U(1)(l)} = 110,39,104,281,678,1627,.... (3.3) 

Recurrence Relations 
Immediately, from (2.1) and (3.1), we have 

j<P(x) = 4»(x) + *xJJ»l(x) + l(&J®2(x), (3.4) 

by means of which a list of convolution polynomials may be presented, in conjunction with (2.2), 
which may be checked against those already given in (3.2). 

Combining (3.4) and (2.10), we deduce that 
2A?/„+1W = 7<1)(X) + (1 + 8X)41)(X) (l + 8x = A2). (3.5) 

Equations (2.9) and (3.5) generate the pleasing connection 
jiHx) = njn+l(x)-4xJn(x), (3.6) 

which, with (1.11), may be cast in the form 
(it - l)jn+l(x) = £Kx) - Jn+l(x). (3.7) 

Alternatively, (3.6) may be demonstrated in the following way. 

216 [JUNE-JULY 



CONVOLUTIONS FOR JACOBSTHAL-TYPE POLYNOMIALS 

| ,«W,~> . ^ . - J ^ f f r ? by(3,) 
CO 

= (1 + 4xy)]TnJn+i(x)yn~l differentiating (1.9) w.r.t. y 

= I («^i Wy1+4*(n -1) y„(x))y, 

whence (3.6) emerges by (1.11). 

Other Main Properties 
Comparing the generating functions in (1.10) and (2.1), we calculate upon simplification that 

jn(x) = 4l\x) + (4x -1) J ^ ( x ) - 64*j£>2(x) - 8x2Jr
II_3(x). (3.8) 

Taken together, (2.9) and (3.6) produce 

4l\x)£Hx) = "2j"+l(x)~}6x2j2^) (A2 = 1 + 8x). (3.9) 
A 

Equation (3.6), in conjunction with (1.7) and (1.8), allows us to display jfp(x) in a Binet 
form. 

Furthermore, (2.9) and (3.6) yield 

A24Hx)+i\x) = 2njn+l(x) (3.10) 
and 

A2Jf(x)-7<1)(x) = 8xJ„(x). (3.11) 

Lastly, we append a result which is left as an exercise for the curiosity of the reader: 
(A2~l)j,(x) = A 2 ^ (3.12) 

where A 2 - l = 8x by(1.6). 

4. GENERAL JACOB8TBAL CONVOLUTION POLYNOMIALS /<*>(*) (* > 1) 

A. CASE k = 2 (Second Jacobsthal Convolution Polynomials) 

Generating Function Definition 

Z-Z^iWy =(l-y-2xy2T3 (4.1) 
w=0 

= [I^+iW/J- (4-la) 
Examples 

JP(X) = \ 42)(x) = 3, 42\x) = 6 + 6x, 42)(x) = 10 + 24x, J$2)(x) = 15 + 60x + 24x2, 
42)(x) = 21 + 120x + 120x2, Jf\x) = 28 + 210x + 360x2 +80x3,.... 

Special Case (Second Jacobsthal Convolution Numbers: x = 1) 

y f ( l ) } = 1,3,12,34,99,261,678,.... (4.3) 
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Observe that this sequence of numbers occurs in the third column of the matrix array in [3, 
p. 401]. 

Recurrence Relations 
Immediately, from (2.1) and (4.1) there comes 

J$i(x) - J?\*) - 2xJ%(.x) = J$i(x) (4-4) 
whereas (1.9) and (4.1) lead to 

/„£(*) - 2Jl\x) + (1 - 4x)jW(x)+4xjW2(x)+4x24%(x) = J„+l(x). (4.5) 

Differentiate both sides of (2.1) partially with respect to y, then equate coefficients of yn~l to 
obtain, by (4.1), 

nJil(x) = 2(42)(x) + 4xjf_>(x)). (4.6) 

Eliminate J$i(x) from (4.4) and (4.6). Hence, 

nJ^(x) = (n + 2)42 >(x) + 2x(/i + 4)J<!^). (4-7) 
Next, eliminate J^i(x) from (4.4) and (4.6). Accordingly, 

(n + 4) J « (x) = 2(2j£>(x) - Ji2\x)). (4.8) 

Not all results in Section 3 above (k = 1) extend readily to direct unit superscript increase on 
both sides of the equation [cf. (2.7), (4.8)]. 

B. CASE k General (kth Jacobsthal Convolution Polynomials) 

Generating Function Definition 

t,Jl&(x)? =(\-y-2xy2rW (4.9) 

( oo \k+l 

= IZ-/r+iW/J by (1.9). (4.9a) 
Examples 

Jj*>(x) = l, ^ ( x ) = ( * t 1 ) , 4k\x) = (k+
2

2y{kll)2x, 

Special Case (£* Jacobsthal Convolution Numbers: x = 1) 

{Jf\l)} = \, h + l, (* + l)(*±£), (k + m + 2)^iy.... (4.11) 

Explicit Combinatorial Form 
Theorem 2: r3=L, 

4^(x)=|(*+, ,; r-1)(, |-;-1)(2xy. (4.i2) 

(4.10) 
\2 , 
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Proof: Constructing the proof parallels the procedures employed in Theorem 1, where k = l. 
That is, apply (4.15), which will be proven independently below, and induction in tandem. 

Remarks: Corresponding to the combinatorial identity (2.11a) for Theorem 1, we require in the 
proof of Theorem 2, 

(4.12a) 

i.e., k is absorbed into the product and demerges as a factor. 
Finally, we have the sum 

N r^-'-'XVM^-^Xv) 
-A N + k-AfN-r 

(4.12b) 

Pascal's formula is needed in (4.12a) and (4.12b). The simplified form in (4.12b) relates to the 
expression for ^ ( x ) in (4.12). 

Knowledge of (4.12) now permits us to compute jf\x) for any k and n. In particular, 
jf){x) = 35 + 120x + 40x2. Refer also to (4.10). 

Recurrence Relations 
Appealing to (4.9) and (4.9) with k - 1 , we have the immediate consequence 

J^)-^n\x)-2xJ^(x) = •&(*)• (4-13) 
Partially differentiate both sides of (4.9) with respect to y. Considering coefficients of yn~l we 
then have, on replacing k by k - 1 , 

nJ<fc\x) = k(4k\x)+4xj£\{x)). (414) 

Combine (4.13) and (4.14) to obtain the recurrence 

nJ%{(x) = (n + k)4k >(x) + 2x(« + 2*) j£{(x). (4.15) 

Furthermore, from (4.13) and (4.14), we arrive at 

(n + 2k)J^x) = k(2jW(x)-4k\x)). (4.16) 

Results when k = 2 may now be checked against those specialized in (4. l)-(4.8). 

Convolution Array for J^ 
In Table 1 below, we exhibit the simplest numbers occurring in the Jacobsthal array for the 

convolution numbers J^. 
Convolution numbers for k = 1,2 and for small values of n are already publicized in (2.3), 

(4.3) and (3.3), (5.3). Applying the extremely useful formulas obtained (from the Cauchy convo-
lutions of a sequence with itself) by induction in [1, pp. 193-94], where the initial conditions (1.1), 
(1.2) are known, we may develop the array for J^ to our heart's desire. Or use Theorem 2 when 
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x = L Systematic reduction to n = l (boundary case) using (4.13) is a rewarding, if tedious, 
exercise. Reduction by (4.13) gives, for example, J^{x) = 10 + 24x in conformity with (4.2). 

TABLE 1. Convolution Array for /<*> (n = 1,2,..., 5) 

I f / * 

1 
2 
3 
4 
5 

0 

T~ 
i 
3 
5 
11 

1 

~T~ 
2 
7 
16 
41 

2 

~T~ 
3 
12 
34 
99 

3 • 

~1 ' 
4 • 
18 -
60 • 
195 • 

k 
~ 1 

(?) 
• m+2(*t") 
" (*S3M*?) 
•• (*r)+6(*r)+4r2

a) 

It should be noted that the formulas given in [1, pp. 193-94] relate to rows in the convolution 
array, whereas it is the columns that are generated in our approach, namely, one column for each 
convolution value of k. 

Be aware that the notation in [1, pp. 193-94] is different, namely, we have the correspon-
dence (subscripts in Rnk referring to rows and columns, respectively) 

Rnk<^4k-l\ (4.17) 

Formula (4.10) and [1, (1.6)] then both yield, for example, i?43 = Jf} = 34 (Table 1). 
Reverting briefly to [3, p. 401] we see that the abbreviated array for J^ is exposed in matrix 

form in which the first, second, third, ... columns of the matrix B2P are precisely our jf\ j£\ 
j(2\ ..., respectively. En passant, we remark that the columns of the matrix AJ* are exactly the 
Pell convolution numbers Pw

(0), Pw
(1), Pw

(2),... examined in [8]. 

5, GENERAL JACOBSTHAL-LUCAS CONVOLUTION 
POLYNOMIALS j<*\x) (k > 1) 

A, CASE k-2 (Second Jacobstfaal-Lucas Convolution Polynomials) 

Generating Function Definition 

£ . / $ (* ) / =(l + 4xyf[l-y-2xy2T3 

(°° V 
\r=0 J 

Examples 
j(2)(x) = 1, jf\x) = 3 +12*, J P ( X ) = 6 + 42* + 48x2, 
ji2)(x) = 10 + 96x + 216x2 + 64x3, j5

(2)(*) = 15 + 180x + 600x2 4-480*3, 

Special Case (Second Jacobsthal-Lucas Convolution Numbers: x = 1) 

{/<2)(1)} = 1,15,96,386,1275,.... 
Recurrence Relations 

Taken together, (1.10), (3.1), and (5.1) yield 
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M W = [tjUx)A[£j&(x)A (5.4) 
w=0 V«=0 Aw=0 / 

Comparing coefficients of yn, we deduce that 
«+i 

ti%(x) = Hmtil+2(x)- (5.5) 

Furthermore, from (4.1) and (5.1), we easily derive 
i2)(x) = 42\x) + UxJJftix) + 48x2 J<?2(x) + 64x342)

3(x). (5.6) 

B. CASE k General (tth Jacolistial-Liicas Convolution Polynomials) 
Generating Function Definition 

Z i S W / =(l + 4xyf+l[l-y-2^2T(k+l) (5.7) 

Examples 

rk + 2 
2 

Theorem 3: 
k+i 

(5.8) 
#>(x) = l, # ) (x) = (*J'1)(l + 4x), 

#)(x) = (* + 1)l^+2x(* + 1){2(* + 1) + l} + (' 
Special Case (k^ Jacobsthal-Lucas Convolution Numbers: x = 1) 

{^(D} = u ( ^ 1 ) , 1 6 ^ 2
+ 1 ) + 2 ( ^ 1 ) { 2 ( ^ 1 ) + l} + ( ^ 2 ) , . . . . (5.9) 

^*)W = Sf* + 1>)(4xyj^)(x), (5.10) 

where J^r(x) are given in (4.12). 
Proof: Expand (l+4xy)*+1 in conjunction with (4.9) and (5.7) to produce 

#>(*) = J?>(x)+(* + ̂ x ^ l W +(* + 1)(4x)2^)
2 (x) + • • • 

+ (* + ! ] (4x)' //_> (x) + • • • + (4x)k*lJ«?Ux). 

The theorem is thus demonstrated. 
Armed with this knowledge (5.10), we may then appeal to (4.12) for the determination of the 

convolution polynomials j^k\x) for any k and n. For example, application of (5.10) leads us to 
j5

(2)(x) = 15 + 180x + 600x2 +480x3, which confirms (5.2). 

Convolution Array for ffi 
A truncated array for ffi is set out in Table 2. 

2002] 221 



CONVOLUTIONS FOR JACOBSTHAL-TYPE POLYNOMIALS 

TABLE 2. Convolution Array for jj,k) (« = 1,2,...,5) 

nlk 
1 
2 
3 
4 
5 

0 1 
1 1 1 1 
5 10 15 20 
7 39 96 178 
17 104 386 488 
31 281 1275 4163 

i6(^)+(r)Krv2}+e;2) 

As In (4.16), we have the correspondence of notation 

where subscripts in Rnk refer to rows and columns, respectively, whence, for instance, R32 = 
jP = 39 (Table 2). 

Evidently, there is a law of diminishing returns evolving as we proceed to study the case for k 
general, and more so as we progress from J^k\x) to j^k\x). Perhaps we should follow a precept 
of Descartes and leave further discoveries for the pleasure of the assiduous investigator. 
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