SECOND-ORDER LINEAR RECURRENCES OF COMPOSITE NUMBERS

Anatoly S. Izotov
Mining Institute, Novosibirsk, Russia
e-mail: izotov@nskes.ru
(Submitted May 2000-Final Revision July 2001)

In [3], W. Sierpinski proved that there are infinitely many odd integers k (Sierpinski numbers)
such that £2" +1 is a composite number for all #>0, i.e.,, he found that the recurrence u,,, =
3u,,, —2u,, n >0, has infinitely many initial values #, =k +1 and » =2k +1 that give composite
u, for all n>0. Analogously, R. L. Graham [1] and D. Knuth [2] found composite integers F,
E, (Fy, F)) =1 for the Fibonacci-like sequence {F,}, n>0, F,,, =F,,; +F, such that F, are all
composite numbers.

In the construction of composite sequences, the authors [1]-[3] used the idea of a covering
set, i.e, aset P={p, p;,..., Py}, A 21, of prime numbers such that, for each n > 0, there exists at
least one p € P such that u, = 0 mod p.

In this note we give a class of integers a> 0, b, (a,b) =1 and find integers wu,, u;, (uy, #,) =1
such that the sequence {u,}, n>0, u,,, = au,,, —bu, with initial values #,, % contain only com-
posite members. For even n, u, has an algebraic decomposition while, for odd », u, has a cover-
ing set P = {p}.

To prove the main theorem, we need the following three lemmas.

Lemma 1: Let integers a, b be such that A=a?—4b=0. Let integers v,, v, be initial values for

the recurrence v,,, = av,,, —bv,, n>0. Then for the sequence {u,}, n>0, and u, =vyw,, u, =
Wy, u,,, =au,,, —bu,, n>0, we have

u2n = vnwn’ (1)
where
wo =k(2v,—avy)/d, w,=k(av,—2bvy)/d, 2)

d = (2v; - av,, av, —2bv,), kis an arbitrary integer and w,,, =aw,, —bw

n-

Proof: Let w,, w, be arbitrary integers. We prove that, if u,, = v,w,, then w,, w, satisfy (2).

nn»

It is known that the sequence {x,}, n> 0, satisfies the recurrence x,,, = ax,,, —bx, if and only if
x, = Aa" +Bp" for n>0, where 4, B are constants and «, f are the distinct roots of the charac-
teristic polynomial z2 ~az+b, since A =a®>~4b# 0. So we have

v, = 4"+ Bpf", w,=A,a"+B,p",
where @ =(a+A)/2, f=(a-A)/2, and
4= —Bv)/(a-Pp), B =(av,—w)/(a-p),
Ay =(w = Ppwo) [ (a—P), B, =(awy-wy)/(a-p).

Furthermore,
vw, = (4a"+ B, ) A4a" +B,f") = Ad,a* +(4,B, + 4,B)a"B" + B,B,*".
So, if A4,B,+A,B, =0, the sequence {u,}, k 20, u, = A A,a* + B,B,B* satisfies u,,, = au,,, —

bu, and u,, =v,w,. Consider
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0= 4B, + 4By = (v~ Bvo)awy = w) (@ = BY + (avy = v)(w, — Bwy) /(e - BY:
= o + BY(viw, +vow)) — 2afvew, — 2viw, 1/ (@ - B).
Since @+ B=a, aff =b, we have a(vyw, +vow,) — 2bvyw, ~ 2vw, = 0, or
{av, — 2bvy)wy = (2v, —avy)w,.

If d = (2v, —av,, av, — 2bv,) and k is an arbitrary integer, then we have (2).
Lemma 2: Let a>1, m>1, and b be integers such that @ =0 mod m and u,, # are initial values
for the recurrence u,,, =au, ., —bu,, n20. If u, =0 mod m, then #,,,, =0 mod m for n>0.

Froof: Consider the sequence {U,}, where Uy, =0, U, =1, U,,, =aU,,,~bU,, n>0. Itis
known that U,, =0 mod a for n>1. Since u,,,, =uU,,,, —buU,, for n>0, we have u,,,, =0

mod m.

Lemma 3: Let integers a> 0 and b be such that (a,5) =1, A=a”-45>0, and u,, u, be initial
values for u, , =au, ,—bu,, n=0, such that #,>0, (b,u) =1, (4, ) =1, and w >au,/2.

n na

Then (u,,u,,)=1and u,, >au /2 for n>0.

Proof: We prove this lemma by induction. We first prove that (b,%,)=1 for n>1. By the
condition of the lemma, (b,#)=1. Let (b,u)=1for 1<i<n. Fori=n+1, we have (b,u,,,)=
(b,au,—bu,_,)=(b,au,)=(b,u,)=1. Since (uy, w;) =1, let (u,u,,)=1for1<i<n. Fori=n+1,
we have (u,,,4,,,) = (u,,,au, ., +bu)=(u,,,,u,) =1 By the statement of Lemma 3, #, > au,/2.
Assume that 4, >au,_,/2 istrue for 1<i<n. Then, fori=n+1,

3
\

Uy =au,—bu,_,=au, /2 +au, /2 -bu,_,
>au, /2 +alau, ;/2)/2-bu, ,>au, /2 +Au,_/4>au, /2.

Thus, the lemma is proved.

‘We now proceed to prove the main theorem.

Theorem: Let odd a>2 and b be integers such that (@,5) =1 and let A=a”~4b>0. Letp be
an odd prime divisor of a such that the Legendre symbol (5/p) =1 and let # > 0 be any solution of
the congruence x* =5 mod p. Let v,>1, (a,v,) =1, and v, = tv, + kp for some positive  such
that (@, v) =, v) =G, v) =1, w>av, /2. Let d = (2v,—avy, av, —2bv,).

Then the sequence {u,} with initial values u, = Qvgv, —~av)/d, = (W} -bv3)/d, and u,,, =
au,,, —bu, for n= 0 is a sequence of composite numbers.

Proof: By Lemma 1, u,, =v,w,, n20. Here v,,, = av,,, —bv,, n >0, for given initial values

7o
Vo, vy, and w,, =aw_ , ~bw,, n =0, for initial values wy = v, —avy)/d, w, = (av, ~2bv,) /d.

We have u, = vywy = Qugy, —avi)/d, u, = vw, = (@vi — 2bvyy) /d . Hence,
w = (u, +bug) /o = (v —abvi)/ad = (v} —-bv}) /d.
Since 2 =b mod p, v, = tvy+kp, and (b,d) =1, we have #, =0 mod p. By Lemma 2, u,,,,; =0

mod p for n>0.
Further, (u,, t) < (i, au,) = (4, 14, +butg) = (45, 1, ) = (vowy, viwy ). Consider

vy, W) <(vg, dw,) = (vg, av, — 2bv) = (v, av;) = L.
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Analogously, (wy, v,) < (dw,, v,) = (2v,— v, 1) =1. Since (v,,v)=1 and (wy, w;) =1, we obtain
(up, u) =1, and by Lemma 3, (u,,u,,,) =1for n=0.
Finally, consider

u —auy /2 = (Vi -bv3)/d - Qavgy, —a™v) 12d = (v, —av, /2)%/d +Avi /4d > 0.
By Lemma 3, u,,, >au, /2 for n>0. Thus, the theorem is proved.

On the other hand, it is easy to prove that there are no primes p,, p, such that p, =ap,_ ;-
bp,,,a>0, (a,b)=1, and a®—4b >0 are primes for all n> 1.

Indeed, if 5=0 mod p,, then p, =ap,—bp, =0 mod p,. Let b+#0 mod p,, then there is an
m< p,+1 such that U, =0 mod p,, where Uy=0, U, =1, U, =aU,,;—~bU,, n20. Since
Pt = PU i1 — 00U, we have p,,,, =0 mod p,.

It is interesting to find a sequence of primes of maximal length for the Mersenne recurrence
Pz = 3Dpss — 2D, for n20, where p,, p, > p, are given primes. The numerical search for small
Do» Dy gives the sequence of nine primes {41,71,131,251,491,971,1931,385], 7691}. The more
exact estimate for length N primes in the Mersenne recurrence uses

Pn = PoMp —2p M, = pM,,,, — 3Py — )M, 3)
where My,=0, M, =1, M,,, =3M,,,-2M,, n>0. p,, p; are given primes and 3p, — p; # 2!,
¢>0. Let m=min,,{0(q):q|(3py~p)}, g is prime, and let v(g) be the minimal s such that
m,=0 mod g. Then by (3), p, =0 mod g and N <m-1. Nis equal to the upper bound, e.g,
for the sequence {3467,6947,13907,27827,55667,111347,222707,445427,890967}. Now, since
D, = 3467, p, = 6947, and 11|3454 =3p, — p;, we have m=v(11) =10 and N =9.
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