FACTORIZATIONS AND EIGENVALUES OF FIBONACCI AND SYMMETRIC FIBONACCI MATRICES

Gwang-Yeon Lee
Department of Mathematics, Hanseo University, Seosan, 356-706 Korea
\section*{Jin-Soo Kim}
Department of Mathematics, Sungkyunkwan University, Suwon, 440-746 Korea
\section*{Sang-Gu Lee}
Department of Mathematics, Sungkyunkwan University, Suwon, 440-746 Korea
(Submitted March 2000-Final Revision September 2000)

1. $\operatorname{INTRODUCTION}$

Matrix methods are a major tool in solving many problems stemming from linear recurrence relations. A matrix version of a linear recurrence relation on the Fibonacci sequence is well known as

$$
\left[\begin{array}{c}
F_{n} \\
F_{n+1}
\end{array}\right]=\left[\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right]\left[\begin{array}{c}
F_{n-1} \\
F_{n}
\end{array}\right] .
$$

We let

$$
Q=\left[\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right]=\left[\begin{array}{cc}
0 & F_{1} \\
F_{1} & F_{2}
\end{array}\right]
$$

then we can easily establish the following interesting property of Q by mathematical induction.

$$
Q^{n}=\left[\begin{array}{cc}
F_{n-1} & F_{n} \\
F_{n} & F_{n+1}
\end{array}\right]
$$

From the equation $Q^{n+1} Q^{n}=Q^{2 n+1}$, we get

$$
\left[\begin{array}{cc}
F_{n+2} & F_{n+1} \\
F_{n+1} & F_{n}
\end{array}\right]\left[\begin{array}{cc}
F_{n+1} & F_{n} \\
F_{n} & F_{n-1}
\end{array}\right]=\left[\begin{array}{cc}
F_{2 n+2} & F_{2 n+1} \\
F_{2 n+1} & F_{2 n}
\end{array}\right]
$$

which, upon tracing through the multiplication, yields an identity for each Fibonacci number on the right-hand side. For example, we have the elegant formula,

$$
\begin{equation*}
F_{n+1}^{2}+F_{n}^{2}=F_{2 n+1} . \tag{1}
\end{equation*}
$$

The sum of the squares of the first n Fibonacci numbers is almost as famous as the formula for the sum of the first n terms:

$$
\begin{equation*}
F_{1}^{2}+F_{2}^{2}+\cdots+F_{n}^{2}=F_{n} F_{n+1} \tag{2}
\end{equation*}
$$

In particular, in [1], the authors gave several basic Fibonacci identities. For example,

$$
\begin{equation*}
F_{1} F_{2}+F_{2} F_{3}+F_{3} F_{4}+\cdots+F_{n-1} F_{n}=\frac{F_{2 n-1}+F_{n} F_{n-1}-1}{2} \tag{3}
\end{equation*}
$$

Now, we define a new matrix. The $n \times n$ Fibonacci matrix $\mathscr{F}_{n}=\left[f_{i j}\right]$ is defined as

$$
\mathscr{F}_{n}=\left[f_{i j}\right]= \begin{cases}F_{i-j+1}, & i-j+1 \geq 0 \\ 0, & i-j+1<0\end{cases}
$$

For example,

$$
\mathscr{F}_{5}=\left[\begin{array}{lllll}
1 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 \\
2 & 1 & 1 & 0 & 0 \\
3 & 2 & 1 & 1 & 0 \\
5 & 3 & 2 & 1 & 1
\end{array}\right],
$$

and the first column of \mathscr{F}_{5} is the vector $(1,1,2,3,5)^{T}$. Thus, several interesting facts can be found from the matrix \mathscr{F}_{n}.

The set of all n-square matrices is denoted by M_{n}. Any matrix $B \in M_{n}$ of the form $B=A^{*} A$, $A \in M_{n}$, may be written as $B=L L^{*}$, where $L \in M_{n}$ is a lower triangular matrix with nonnegative diagonal entries. This factorization is unique if A is nonsingular. This is called the Cholesky factorization of B. In particular, a matrix B is positive definite if and only if there exists a nonsingular lower triangular matrix $L \in M_{n}$ with positive diagonal entries such that $B=L L^{*}$. If B is a real matrix, L may be taken to be real.

A matrix $A \in M_{n}$ of the form

$$
A=\left[\begin{array}{cccc}
A_{11} & 0 & & \\
0 & A_{22} & & 0 \\
& 0 & & A_{k k}
\end{array}\right]
$$

in which $A_{i i} \in M_{n_{i}}, i=1,2, \ldots, k$, and $\sum_{i=1}^{k} n_{i}=n$, is called block diagonal. Notationally, such a matrix is often indicated as $A=A_{11} \oplus A_{22} \oplus \cdots \oplus A_{k k}$ or, more briefly, $\oplus \sum_{i=1}^{k} A_{i i}$; this is called the direct sum of the matrices $A_{11}, \ldots, A_{k k}$.

2. FACTORIZATIONS

In [2], the authors gave the Cholesky factorization of the Pascal matrix. In this section we consider the construction and factorization of our Fibonacci matrix of order n by using the (0,1)matrix, where a matrix is said to be a $(0,1)$-matrix if each of its entries is either 0 or 1 .

Let I_{n} be the identity matrix of order n. Further, we define the $n \times n$ matrices $S_{n}, \overline{\mathscr{F}}_{n}$, and G_{k} by

$$
S_{0}=\left[\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 0 \\
1 & 0 & 1
\end{array}\right], \quad S_{-1}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 1 & 1
\end{array}\right],
$$

and $S_{k}=S_{0} \oplus I_{k}, k=1,2, \ldots, \quad \overline{\mathscr{F}}_{n}=[1] \oplus \mathscr{F}_{n-1}, G_{1}=I_{n}, G_{2}=I_{n-3} \oplus S_{-1}$, and, for $k \geq 3, G_{k}=$ $I_{n-k} \oplus S_{k-3}$. Then we have the following lemma.
Lemma 2.1: $\overline{\mathscr{F}}_{k} S_{k-3}=\mathscr{F}_{k}, k \geq 3$.
Proof: For $k=3$, we have $\overline{\mathscr{F}} S_{0}=\mathscr{F}_{3}$. Let $k>3$. From the definition of the matrix product and the familiar Fibonacci sequence, the conclusion follows.

From the definition of G_{k}, we know that $G_{n}=S_{n-3}, G_{1}=I_{n}$, and $I_{n-3} \oplus S_{-1}$. The following theorem is an immediate consequence of Lemma 2.1.

Theorem 2.2: The Fibonacci matrix \mathscr{F}_{n} can be factored by the G_{k} 's as follows: $\mathscr{F}_{n}=G_{1} G_{2} \cdots G_{n}$. For example,

$$
\begin{aligned}
& \mathscr{F}_{5}=G_{1} G_{2} G_{3} G_{4} G_{5}=I_{5}\left(I_{2} \oplus S_{-1}\right)\left(I_{2} \oplus S_{0}\right)\left([1] \oplus S_{1}\right) S_{2} \\
& =\left[\begin{array}{lllll}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{lllll}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 1
\end{array}\right]\left[\begin{array}{lllll}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 & 1
\end{array}\right]\left[\begin{array}{lllll}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{lllll}
1 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right] \\
& =\left[\begin{array}{lllll}
1 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 \\
2 & 1 & 1 & 0 & 0 \\
3 & 2 & 1 & 1 & 0 \\
5 & 3 & 2 & 1 & 1
\end{array}\right] .
\end{aligned}
$$

Now we consider another factorization of \mathscr{F}_{n}. The $n \times n$ matrix $C_{n}=\left[c_{i j}\right]$ is defined as

$$
c_{i j}=\left\{\begin{array}{ll}
F_{i}, & j=1, \\
1, & i=j, \\
0, & \text { otherwise, }
\end{array} \quad \text { i. e., } C_{n}=\left[\begin{array}{cccc}
F_{1} & 0 & \cdots & 0 \\
F_{2} & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
F_{n} & 0 & \cdots & i
\end{array}\right] .\right.
$$

The next theorem follows by a simple calculation.
Theorem 2.3: For $n \geq 2, \mathscr{F}_{n}=C_{n}\left(I_{1} \oplus C_{n-1}\right)\left(I_{2} \oplus C_{n-2}\right) \cdots\left(I_{n-2} \oplus C_{2}\right)$.
Also, we can easily find the inverse of the Fibonacci matrix \mathscr{F}_{n}. We know that

$$
S_{0}^{-1}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
-1 & 1 & 0 \\
-1 & 0 & 1
\end{array}\right], \quad S_{-1}^{-1}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & -1 & 1
\end{array}\right], \quad \text { and } \quad S_{k}^{-1}=S_{0}^{-1} \oplus I_{k} .
$$

Define $H_{k}=G_{k}^{-1}$. Then

$$
H_{1}=G_{1}^{-1}=I_{n}, \quad H_{2}=G_{2}^{-1}=I_{n-3} \oplus S_{-1}^{-1}=I_{n-2} \oplus\left[\begin{array}{cc}
1 & 0 \\
-1 & 1
\end{array}\right], \quad \text { and } \quad H_{n}=S_{n-3}^{-1} .
$$

Also, we know that

$$
C_{n}^{-1}=\left[\begin{array}{cccc}
F_{1} & 0 & \cdots & 0 \\
-F_{2} & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
-F_{n} & 0 & \cdots & 1
\end{array}\right] \text { and }\left(I_{k} \oplus C_{n-k}\right)^{-1}=I_{k} \oplus C_{n-k}^{-1} .
$$

So the following corollary holds.
Corollary 2.4: $\mathscr{F}_{n}^{-1}=G_{n}^{-1} G_{n-1}^{-1} \cdots G_{2}^{-1} G_{1}^{-1}=H_{n} H_{n-1} \cdots H_{2} H_{1}=\left(I_{n-2} \oplus C_{2}\right)^{-1} \cdots\left(I_{1} \oplus C_{n-1}\right)^{-1} C_{n}^{-1}$.
From Corollary 2.4, we have

$$
\mathscr{F}_{n}^{-1}=\left[\begin{array}{cccccc}
1 & 0 & 0 & 0 & \cdots & 0 \tag{4}\\
-1 & 1 & 0 & 0 & \cdots & 0 \\
-1 & -1 & 1 & 0 & \cdots & 0 \\
0 & -1 & -1 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\
0 & \cdots & 0 & -1 & -1 & 1
\end{array}\right] .
$$

Now we define a symmetric Fibonacci matrix $\mathscr{Q}_{n}=\left[q_{i j}\right]$ as, for $i, j=1,2, \ldots, n$,

$$
q_{i j}=q_{j i}= \begin{cases}\sum_{k=1}^{i} F_{k}^{2}, & i=j, \\ q_{i, j-2}+q_{i, j-1}, & i+1 \leq j\end{cases}
$$

where $q_{1,0}=0$. Then we have $q_{1 j}=q_{j 1}=F_{j}$ and $q_{2 j}=q_{j 2}=F_{j+1}$. For example,

$$
2_{10}=\left[\begin{array}{cccccccccc}
1 & 1 & 2 & 3 & 5 & 8 & 13 & 21 & 34 & 55 \\
1 & 2 & 3 & 5 & 8 & 13 & 21 & 34 & 55 & 89 \\
2 & 3 & 6 & 9 & 15 & 24 & 39 & 63 & 102 & 165 \\
3 & 5 & 9 & 15 & 24 & 39 & 63 & 102 & 165 & 267 \\
5 & 8 & 15 & 24 & 40 & 64 & 104 & 168 & 272 & 440 \\
8 & 13 & 24 & 39 & 64 & 104 & 168 & 272 & 440 & 712 \\
13 & 21 & 39 & 63 & 104 & 168 & 273 & 441 & 714 & 1155 \\
21 & 34 & 63 & 102 & 168 & 272 & 441 & 714 & 1155 & 1869 \\
34 & 55 & 102 & 165 & 272 & 440 & 714 & 1155 & 1879 & 3025 \\
55 & 89 & 165 & 267 & 440 & 712 & 1155 & 1869 & 3025 & 4895
\end{array}\right] .
$$

From the definition of 2_{n}, we derive the following lemma.
Lemma 2.5: For $j \geq 3, q_{3 j}=F_{4}\left(F_{j-3}+F_{j-2} F_{3}\right)$.
Proof: We know that $q_{3,3}=F_{1}^{2}+F_{2}^{2}+F_{3}^{2}=F_{3} F_{4}$; hence, $q_{3,3}=F_{4} F_{3}=F_{4}\left(F_{0}+F_{1} F_{3}\right)$ for $F_{0}=0$. By induction, $q_{3 j}=F_{4}\left(F_{j-3}+F_{j-2} F_{3}\right)$.

We know that $q_{3,1}=q_{1,3}=F_{3}$ and $q_{3,2}=q_{2,3}=F_{4}$. Also we see that $q_{4,1}=q_{1,4}, q_{4,2}=q_{2,4}$, and $q_{4,3}=q_{3,4}$. By induction, we have the following lemma.

Lemma 2.6: For $j \geq 4, q_{4 j}=F_{4}\left(F_{j-4}+F_{j-4} F_{3}+F_{j-3} F_{5}\right)$.
From Lemmas 2.5 and 2.6, we know $q_{5,1}, q_{5,2}, q_{5,3}$, and $q_{5,4}$. From these facts and the definition of 2_{n}, we have the following lemma.

Lemma 2.7: For $j \geq 5, q_{5 j}=F_{j-5} F_{4}\left(1+F_{3}+F_{5}\right)+F_{j-4} F_{5} F_{6}$.
Proof: Since $q_{5,5}=F_{5} F_{6}$ we have, by induction, $q_{5 j}=F_{j-5} F_{4}\left(1+F_{3}+F_{5}\right)+F_{j-4} F_{5} F_{6}$.
From the definition of 2_{n} together with Lemmas 2.5, 2.6, and 2.7, we have the following lemma by induction on i.

Lemma 2.8: For $j \geq i \geq 6$,

$$
q_{i j}=F_{j-i} F_{4}\left(1+F_{3}+F_{5}\right)+F_{j-i} F_{5} F_{6}+F_{j-i} F_{6} F_{7}+\cdots+F_{j-i} F_{i-1} F_{i}+F_{j-i+1} F_{i} F_{i+1} .
$$

Now we have the following theorem.
Theorem 2.9: For $n \geq 1$ a positive integer, $H_{n} H_{n-1} \cdots H_{2} H_{1} 2_{n}=\mathscr{F}_{n}^{T}$ and the Cholesky factorization of 2_{n} is given by $2_{n}=\mathscr{F}_{n} \mathscr{F}_{n}^{T}$.

Proof: By Corollary 2.4, $H_{n} H_{n-1} \cdots H_{2} H_{1}=\mathscr{F}_{n}^{-1}$. So, if we have $\mathscr{F}_{n}^{-1} \mathscr{Q}_{n}=\mathscr{F}_{n}^{T}$, then the theorem holds.

Let $X=\left[x_{i j}\right]=\mathscr{F}_{n}^{-1} 2_{n}$. Then, by (4), we have the following:

$$
x_{i j}= \begin{cases}F_{j}, & \text { if } i=1, \\ F_{j-1}, & \text { if } i=2, \\ -q_{i-2, j}-q_{i-1, j}+q_{i j} & \text { otherwise. }\end{cases}
$$

Now we consider the case $i \geq 3$. Since 2_{n} is a symmetric matrix, $-q_{i-2, j}-q_{i-1, j}+q_{i j}=$ $-q_{j, i-2}-q_{j, i-1}+q_{j i}$. Hence, by the definition of $\mathscr{2}_{n}, x_{i j}=0$ for $j+1 \leq i$. So, we will prove that $-q_{i-2, j}-q_{i-1, j}+q_{i j}=F_{j-i+1}$ for $j \geq i$.

In the case in which $i \leq 5$, we have $x_{i j}=F_{j-i+1}$ by Lemmas 2.5, 2.4, and 2.7.
Now suppose that $j \geq i \geq 6$. Then, by Lemma 2.8, we have

$$
\begin{aligned}
x_{i j}= & -q_{i-2, j}-q_{i-1, j}+q_{i j} \\
= & \left(F_{j-i}-F_{j-i+1}-F_{j-i+2}\right) F_{4}\left(1+F_{3}+F_{5}\right)+\left(F_{j-i}-F_{j-i+1}-F_{j-i+2}\right) F_{5} F_{6} \\
& +\cdots+\left(F_{j-i}-F_{j-i+1}-F_{j-i+2}\right) F_{i-3} F_{i-2}+\left(F_{j-i}-F_{j-i+1}-F_{j-i+3}\right) F_{i-2} F_{i-1} \\
& +\left(F_{j-i}-F_{j-i+2}\right) F_{i-1} F_{i}+F_{j-i+1} F_{i-1} F_{i+1} .
\end{aligned}
$$

Since $F_{j-i}-F_{j-i+1}-F_{j-i+2}=-2 F_{j-i+1}, F_{j-i}-F_{j-i+1}-F_{j-i+3}=-3 F_{j-i+1}$, and $F_{j-i}-F_{j-i+2}=-F_{j-i+1}$, we have

$$
x_{i j}=F_{j-i+1}\left[-2 F_{4}-2\left(F_{3} F_{4}+F_{4} F_{5}+\cdots+F_{i-2} F_{i-1}\right)-F_{i-2} F_{i-1}-F_{i-1} F_{i}+F_{i} F_{i+1}\right] .
$$

Since $F_{4}=3$, using (3) we have

$$
x_{i j}=\left[-6-2\left(\frac{F_{2(i-1)-1}+F_{i-1} F_{(i-1)-1}-1}{2}-F_{1} F_{2}-F_{2} F_{3}\right)-F_{i-2} F_{i-1}-F_{i-1} F_{i}+F_{i} F_{i+1}\right] F_{j-i+1} .
$$

Since $F_{i+1}=F_{i}+F_{i-1}$ and by (1) we have

$$
\begin{aligned}
x_{i j} & =\left(1-2 F_{i-1} F_{i-2}-F_{2 i-3}-F_{i-1} F_{i}+F_{i} F_{i+1}\right) F_{j-i+1} \\
& =\left(1-2 F_{i-1} F_{i-2}-F_{2 i-3}+F_{i}^{2}\right) F_{j-i+1} \\
& =\left(1-F_{i-1}^{2}-F_{i-2}^{2}-2 F_{i-1} F_{i-2}+F_{i}^{2}\right) F_{j-i+1} \\
& =\left(1-\left(F_{i-1}+F_{i-1}\right)^{2}+F_{i}^{2}\right) F_{j-i+1} \\
& =\left(1-F_{i}^{2}+F_{i}^{2}\right) F_{j-i+1}=F_{j-i+1} .
\end{aligned}
$$

Therefore, $\mathscr{F}_{n}^{-1} \mathscr{Q}_{n}=\mathscr{F}_{n}^{T}$, i.e., the Cholesky factorization of \mathscr{Q}_{n} is given by $\mathscr{2}_{n}=\mathscr{F}_{n} \mathscr{F}_{n}^{T}$.
In particular, since $2_{n}^{-1}=\left(\mathscr{F}_{n}^{T}\right)^{-1} \mathscr{F}_{n}^{-1}=\left(\mathscr{F}_{n}^{-1}\right)^{T} \mathscr{F}_{n}^{-1}$, we have

$$
\mathscr{Q}_{n}^{-1}=\left[\begin{array}{cccccccc}
3 & 0 & -1 & 0 & \cdots & & & 0 \tag{5}\\
0 & 3 & 0 & -1 & \cdots & & & 0 \\
-1 & 0 & 3 & 0 & \cdots & & & 0 \\
0 & -1 & 0 & 3 & \ddots & & & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \ddots & & \vdots \\
0 & 0 & 0 & 0 & \cdots & 3 & 0 & -1 \\
0 & 0 & 0 & 0 & \cdots & 0 & 2 & -1 \\
0 & 0 & 0 & 0 & \cdots & -1 & -1 & 1
\end{array}\right] .
$$

From Theorem 2.9, we have the following corollary.

Corollary 2.10: If k is an odd number, then

$$
F_{n} F_{n-k}+\cdots+F_{k+1} F_{1}= \begin{cases}F_{n} F_{n-(k-1)}-F_{k} & \text { if } n \text { is odd } \\ F_{n} F_{n-(k-1)} & \text { if } n \text { is even } .\end{cases}
$$

If k is an even number, then

$$
F_{n} F_{n-k}+\cdots+F_{k+1} F_{1}= \begin{cases}F_{n} F_{n-(k-1)} & \text { if } n \text { is odd } \\ F_{n} F_{n-(k-1)}-F_{k} & \text { if } n \text { is even } .\end{cases}
$$

For the case when we multiply the $i^{\text {th }}$ row of \mathscr{F}_{n} and the $i^{\text {th }}$ column of \mathscr{F}_{n}, we have the famous formula (2). Also, formula (2) is the case when $k=0$ in Corollary 2.10.

3. EIGENVALUES OF $\mathbf{Q}_{\boldsymbol{n}}$

In this section, we consider the eigenvalues of $\mathscr{2}_{n}$.
Let $\mathscr{D}=\left\{\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{R}^{n}: x_{1} \geq x_{2} \geq \cdots \geq x_{n}\right\}$. For $\mathbf{x}, \mathbf{y} \in \mathscr{D}, \mathbf{x} \prec \mathbf{y}$ if $\sum_{i=1}^{k} x_{i} \leq \sum_{i=1}^{k} y_{i}$, $k=1,2, \ldots, n$ and if $k=n$, then the equality holds. When $\mathbf{x} \prec \mathbf{y}, \mathbf{x}$ is said to be majorized by \mathbf{y}, or \mathbf{y} is said to majorize \mathbf{x}. The condition for majorization can be rewritten as follows: for $\mathbf{x}, \mathbf{y} \in \mathscr{D}$, $\mathbf{x} \prec \mathrm{y}$ if $\sum_{i=0}^{k} x_{n-i} \geq \sum_{i=0}^{k} y_{n-i}, k=0,1, \ldots, n-2$, and if $k=n-1$, then equality holds.

The following is an interesting simple fact:

$$
(\bar{x}, \ldots, \bar{x}) \prec\left(x_{1}, \ldots, x_{n}\right) \text {, where } \bar{x}=\frac{\sum_{n=1}^{n} x_{i}}{n} .
$$

More interesting facts about majorizations can be found in [4].
An $n \times n$ matrix $P=\left[p_{i j}\right]$ is doubly stochastic if $p_{i j} \geq 0$ for $i, j=1,2, \ldots, n, \sum_{i=1}^{n} p_{i j}=1$, $j=1,2, \ldots, n$, and $\sum_{j=1}^{n} p_{i j}=1, i=1,2, \ldots, n$. In 1929, Hardy, Littlewood, and Polya proved that a necessary and sufficient condition that $\mathbf{x} \prec \mathbf{y}$ is that there exist a doubly stochastic matrix P such that $\mathbf{x}=\mathbf{y} P$.

We know both the eigenvalues and the main diagonal elements of a real symmetrix matrix are real numbers. The precise relationship between the main diagonal elements and the eigenvalues is given by the notion of majorization as follows: the vector of eigenvalues of a symmetrix matrix is majorized by the diagonal elements of the matrix.

Note that $\operatorname{det} \mathscr{F}_{n}=1$ and $\operatorname{det} 2_{n}=1$. Let $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ be the eigenvalues of 2_{n}. Since $\mathscr{2}_{n}=$ $\mathscr{F}_{n} \mathscr{F}_{n}^{T}$ and $\sum_{i=1}^{k} F_{i}^{2}=F_{k+1} F_{k}$, the eigenvalues of 2_{n} are all positive and

$$
\left(F_{n+1} F_{n}, F_{n} F_{n-1}, \ldots, F_{2} F_{1}\right) \prec\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right) .
$$

In [1], we find the interesting combinatorial property, $\sum_{i=0}^{n}\binom{n-i}{i}=F_{n+1}$. So we have the following corollaries.
Corollary 3.1: Let $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ be the eigenvalues of \mathscr{Q}_{n}. Then

$$
\lambda_{1}+\lambda_{2}+\cdots+\lambda_{n}= \begin{cases}\left(\sum_{i=0}^{n}\binom{n-i}{i}\right)^{2}-1 & \text { if } n \text { is odd } \\ \left(\sum_{i=0}^{n}\binom{n-i}{i}\right)^{2} & \text { if } n \text { is even }\end{cases}
$$

FACTORIZATIONS AND EIGENVALUES OF FIBONACCI AND SYMMETRIC FIBONACCI MATRICES

Proof: Since $\left(F_{n+1} F_{n}, F_{n} F_{n-1}, \ldots, F_{2} F_{1}\right) \prec\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right)$, and from Corollary 2.10,

$$
\lambda_{1}+\lambda_{2}+\cdots+\lambda_{n}=\left\{\begin{array}{ll}
\left(F_{n+1}\right)^{2}-F_{1} & \text { if } n \text { is odd, } \\
\left(F_{n+1}\right)^{2} & \text { if } n \text { is even, }
\end{array}= \begin{cases}\left(\sum_{i=0}^{n}\binom{n-i}{i}\right)^{2}-1 & \text { if } n \text { is odd } \\
\left(\sum_{i=0}^{n}\binom{n-i}{i}\right)^{2} & \text { if } n \text { is even. }\end{cases}\right.
$$

Corollary 3.2: If n is an odd number, then

$$
n \lambda_{n} \leq\left(\sum_{i=0}^{n}\binom{n-i}{i}\right)^{2}-1 \leq n \lambda_{1} .
$$

If n is an even number, then

$$
n \lambda_{n} \leq\left(\sum_{i=0}^{n}\binom{n-i}{i}\right)^{2} \leq n \lambda_{1} .
$$

Proof: Let $s_{n}=\lambda_{1}+\lambda_{2}+\cdots+\lambda_{n}$. Since

$$
\left(\frac{s_{n}}{n}, \frac{s_{n}}{n}, \ldots, \frac{s_{n}}{n}\right) \prec\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right),
$$

we have $\lambda_{n} \leq \frac{s_{n}}{n} \leq \lambda_{1}$. Therefore, the proof is complete.
From equation (5), we have

$$
\begin{equation*}
(3,3, \ldots, 3,2,1) \prec\left(\frac{1}{\lambda_{n}}, \frac{1}{\lambda_{n-1}}, \ldots, \frac{1}{\lambda_{1}}\right) . \tag{6}
\end{equation*}
$$

Thus, there exists a doubly stochastic matrix $T=\left[t_{i j}\right]$ such that

$$
(3,3, \ldots, 3,2,1)=\left(\frac{1}{\lambda_{n}}, \frac{1}{\lambda_{n-1}}, \ldots, \frac{1}{\lambda_{1}}\right)\left[\begin{array}{cccc}
t_{11} & t_{12} & \cdots & t_{1 n} \\
t_{21} & t_{22} & \cdots & t_{2 n} \\
\vdots & \vdots & \cdots & \vdots \\
t_{n 1} & t_{n 2} & \cdots & t_{n n}
\end{array}\right] .
$$

That is, we have $\frac{1}{\lambda_{n}} t_{1 n}+\frac{1}{\lambda_{n-1}} t_{2 n}+\cdots+\frac{1}{\lambda_{1}} t_{n n}=1$ and $t_{1 n}+t_{2 n}+\cdots+t_{n n}=1$.
Lemma 3.3: For each $i=1,2, \ldots, n, t_{n-(i-1), n} \leq \frac{\lambda_{i}}{n-1}$.
Proof: Suppose that $t_{n-(i-1), n}>\frac{\lambda_{i}}{n-1}$. Then

$$
t_{1 n}+t_{2 n}+\cdots+t_{n n}>\frac{\lambda_{1}}{n-1}+\frac{\lambda_{2}}{n-1}+\cdots \frac{\lambda_{n}}{n-1}=\frac{1}{n-1}\left(\lambda_{1}+\lambda_{2}+\cdots+\lambda_{n}\right) .
$$

Since $t_{1 n}+t_{2 n}+\cdots+t_{n n}=1$ and $\sum_{i=1}^{n} \lambda_{i} \geq n$, this yields a contradiction, so $t_{n-(i-1), n} \leq \frac{\lambda_{i}}{n-1}$.
From Lemma 3.3, we have $1-(n-1) \frac{1}{\lambda_{i}} t_{n-(i-1), n} \geq 0$. Let $\alpha=s_{n}-(n-1)$. Therefore, we have the following theorem.

Theorem 3.4: For $(\alpha, 1,1, \ldots, 1) \in \mathscr{D},(\alpha, 1,1, \ldots, 1) \prec\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right)$.
Proof: A necessary and sufficient condition that $(\alpha, 1,1, \ldots, 1) \prec\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right)$ is that there exist a doubly stochastic matrix P such that $(\alpha, 1,1, \ldots, 1)=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right) P$.

We define an $n \times n$ matrix $P=\left[p_{i j}\right]$ as follows:

$$
P=\left[\begin{array}{cccc}
p_{11} & p_{12} & \cdots & p_{12} \\
p_{21} & p_{22} & \cdots & p_{22} \\
\vdots & \vdots & \vdots & \vdots \\
p_{n 1} & p_{n 2} & \cdots & p_{n 2}
\end{array}\right],
$$

where $p_{i 2}=\frac{1}{\lambda_{i}} t_{n-(i-1), n}$ and $p_{i 1}=1-(n-1) p_{i 2}, i=1,2, \ldots, n$. Since T is doubly stochastic and $\lambda_{i}>0, p_{i 2} \geq 0, i=1,2, \ldots, n$. By Lemma 3.3, $p_{i 1} \geq 0, i=1,2, \ldots, n$. Then

$$
\begin{aligned}
& p_{12}+p_{22}+\cdots+p_{n 2}=\frac{t_{n n}}{\lambda_{1}}+\frac{t_{n-1, n}}{\lambda_{2}}+\cdots+\frac{t_{1 n}}{\lambda_{n}}=1, \\
& p_{i 1}+(n-1) p_{i 2}=1-(n-1) p_{i 2}+(n-1) p_{i 2}=1,
\end{aligned}
$$

and

$$
\begin{aligned}
p_{11}+p_{21}+\cdots+p_{n 1} & =1-(n-1) p_{12}+1-(n-1) p_{22}+\cdots+1-(n-1) p_{n 2} \\
& =n-n\left(p_{12}+p_{22}+\cdots+p_{n 2}\right)+p_{12}+p_{22}+\cdots+p_{n 2}=1 .
\end{aligned}
$$

Thus, p is a doubly stochastic matrix. Furthermore,

$$
\begin{aligned}
\lambda_{1} p_{12}+\lambda_{2} p_{22}+\cdots+\lambda_{n} p_{n 2} & =\lambda_{1} \frac{t_{n n}}{\lambda_{1}}+\lambda_{2} \frac{t_{n-1, n}}{\lambda_{2}}+\cdots+\lambda_{n} \frac{t_{1 n}}{\lambda_{n}} \\
& =t_{n n}+t_{n-1, n}+\cdots+t_{1 n}=1
\end{aligned}
$$

and

$$
\begin{aligned}
\lambda_{1} p_{11}+\lambda_{2} p_{21}+\cdots+\lambda_{n} p_{n 1} & =\lambda_{1}\left(1-(n-1) p_{12}\right)+\cdots+\lambda_{n}\left(1-(n-1) p_{n 2}\right) \\
& =\lambda_{1}+\lambda_{2}+\cdots+\lambda_{n}-(n-1)\left(\lambda_{1} p_{12}+\lambda_{2} p_{22}+\cdots+\lambda_{n} p_{n 2}\right) \\
& =\lambda_{1}+\lambda_{2}+\cdots+\lambda_{n}-(n-1)=\alpha .
\end{aligned}
$$

Thus, $(\alpha, 1,1, \ldots, 1)=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right) P$, so $(\alpha, 1,1, \ldots, 1) \prec\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right)$.
From equation (6), we have the following lemma.
Lemma 3.5: For $k=2,3, \ldots, n, \lambda_{k} \geq \frac{1}{3(k-1)}$.
Proof: From (6), for $k \geq 2$,

$$
\frac{1}{\lambda_{1}}+\frac{1}{\lambda_{2}}+\cdots+\frac{1}{\lambda_{k}} \leq 1+2+3+\cdots+3=3(k-1) .
$$

Thus,

$$
\frac{1}{\lambda_{k}} \leq 3(k-1)-\left(\frac{1}{\lambda_{1}}+\frac{1}{\lambda_{2}}+\cdots+\frac{1}{\lambda_{k-1}}\right) \leq 3(k-1) .
$$

Therefore, for $k=2,3, \ldots, n, \lambda_{k} \geq \frac{1}{3(k-1)}$. \square
Corollary 3.6: For $k=1,2, \ldots, n-2, \lambda_{n-k} \leq(k+1)-\frac{n-k}{3(n-1)}$. In particular, $\alpha \leq \lambda_{1}$ and $\frac{1}{3(k-1)} \leq$ $\lambda_{n} \leq \frac{1}{3}$.

Proof: If $k=1$, then. $\lambda_{n}+\lambda_{n-1} \leq 2$. By Lemma 3.5, we have $\lambda_{n-1} \leq 2-\frac{1}{3(n-1)}$. Hence, by induction on n, the proof is complete for $k=1,2, \ldots, n-2$. In particular, by Theorem 3.4 and (6), $\frac{1}{3(n-1)} \leq \lambda_{n} \leq \frac{1}{3}$.

Since $\operatorname{det} 2_{n}=\lambda_{1} \lambda_{2} \ldots \lambda_{n}=1, \lambda_{2} \lambda_{3} \ldots \lambda_{n}=\frac{1}{\lambda_{1}}$, we have $\lambda_{1}^{n-1} \geq \lambda_{1} \ldots \lambda_{n-1}=\frac{1}{\lambda_{n}}$. Thus,

$$
\lambda_{n} \geq\left(\frac{1}{\lambda_{1}}\right)^{n-1}
$$

Therefore,

$$
\left(\frac{1}{\lambda_{1}}\right)^{n-1} \leq \lambda_{n} \leq \frac{1}{3}
$$

ACKNOWLEDGMENTS

The first author's work was partially supported by KOSEF, 2000. The third author's work was partially supported by the Brain Korea 21 Project.

REFERENCES

1. M. Bicknell \& V. E. Hoggatt, Jr. Fibonacci's Problem Book. Santa Clara, CA: The Fibonacci Association, 1974.
2. R. Brawer \& M. Pirovino. "The Linear Algebra of the Pascal Matrix." Linear Algebra and Its Applications 174 (1992)13-23.
3. G. S. Call \& D. J. Vellmann. "Pascal's Matrices." Amer. Math. Monthly 100 (1993):372-76.
4. A. W. Marshall \& I. Olkin. Inequalities: Theory of Majorization and Its Applications. New York: Academic Press, 1979.

AMS Classification Numbers: 05A19, 11B39, 15A18, 15A42
\% \%i \%

