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1. INTRODUCTION 

Matrix methods are a major tool in solving many problems stemming from linear recurrence 
relations. A matrix version of a linear recurrence relation on the Fibonacci sequence is well 
known as 

Fn-l 
, F n . 

We let 

[0 1] 
Li iJ 

nj0 l ]_[0 Fx 
L1 1J — L ^ F2 

thee we can easily establish the following interesting property of Q by mathematical induction. 

Qn = Fn Fn+l. 

From the equation Qn+lQn = Q2n+\ we get 
Fn+2 Fn+l 

/ n + 1 Af . 

Fn+1 F. F2n+2 F2n+l 
F2n+l F2n 

3 F„ i v j 
which, upon tracing through the multiplication, yields an identity for each Fibonacci number on 
the right-hand side. For example, we have the elegant formula, 

F?+l + F*=F2n+l. (1) 

The sum of the squares of the Irst n Fibonacci numbers is almost as famous as the formula for the 
sum of the first n terms: 

F? + F? + "-+F2 -FF ln+l' 

In particular, in [1], the authors gave several basic Fibonacci identities. For example, 

F& +F2F3+F3F4 + -+F„_1F„ = F™ +Ff^" * • 

Now, we define a new matrix. The n x n Fibonacci matrix <Fn = [/•,] is defined as 

\F,_J+U i-j+ 1*0, 

(2) 

(3) 

»„ = [/*] = 0, i-j + l<0. 
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For example, 

95 = 

1 
1 
2 
3 
5 

0 
1 
1 
2 
3 

0 
0 
1 
1 
2 

0 
0 
0 
1 
1 

0 
0 
0 
0 
1 

and the first column of SF5 is the vector (1,1,2,3,5)r„ Thus, several interesting facts can be found 
from the matrix 3^. 

The set of all n-square matrices is denoted by Mn. Any matrix B sMn of the form B - A*A, 
AeMn, may be written as B = UT9 where L eMn is a lower triangular matrix with nonnegative 
diagonal entries. This factorization is unique if A is nonsingular. This is called the Gholesky fac-
torization of B. In particular, a matrix B is positive definite if and only if there exists a nonsingular 
lower triangular matrix L GM„ with positive diagonal entries such that B = LIT. If B is a real 
matrix, L may be taken to be real. 

A matrix A e Mn of the form 

A = 
"4i 

o 
0 

^22 

0 * A * . 

in which Aii sMnn i = 1,2,..., k, and E^flj = n, is called Mock diagonal Notationally, such a 
matrix is often indicated as A = An ® A^ © • • • ® 4at or? m o r e briefly, ® Zf=i 4*; this is called the 
direct sum of the matrices An,..., 4t&-

2. FACTORIZATIONS 

In [2], the authors gave the Cholesky factorization of the Pascal matrix. In this section we 
consider the construction and factorization of our Fibonacci matrix of order n by using the (0,1)-
matrix, where a matrix is said to be a (0,1)-matrix if each of its entries is either 0 or 1. 

Let /„ be the identity matrix of order n. Further, we define the n x n matrices Sn9 9n, and 
Gkby 

S0 = 
"l 0 0" 
1 1 0 
1 0 1 

, S-! = 
" 1 0 0] 
0 1 0 
0 1 ij 

and Sk=So®Ik, k = \%...9 9j, = [ l ] e 9 U G^In, G2 = In_3i 
In_k ® Sk_3. Then we have the following lemma. 

S_l9 and, for k>39 Gk = 

Lemma 2.1: ^ ^ ~ 3 - ^ ^ - 3 ' 

Proof: For k = 3, we have SF3 $0 = 2F3. Let k > 3. From the definition of the matrix product 
and the familiar Fibonacci sequence, the conclusion follows. D 

From the definition of Gk9 we know that Gn = Sn„39 Gl = In9 and In_3 ® S_v The following 
theorem is an immediate consequence of Lemma 2.1. 
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Theorem 2.2; The Fibonacci matrix \ can be factored by the Gk*$ as follows: ¥fn = GtG2 °°°Gn. 
For example, 

9?s = GtG2G3G4G5 = I5(I2 ® S^XI2 © SQ)(m © TO 
1 0 0 0 0] 
0 1 0 0 0 
0 0 1 0 0 
0 0 0 1 0 
0 0 0 0 ij 

1 0 0 
0 1 0 
0 0 1 
0 0 0 
0 0 0 

0 
0 
0 
1 
1 

oil 
0 1 
0 1 
0 

IJ 

1 0 
0 1 
0 0 
0 0 
0 0 

0 
0 
1 
1 
1 

0 Oil 
0 0 1 
0 0 
1 0 
0 l j 

1 
0 
0 
0 
0 

0 
1 
1 
1 
0 

0 0 Ol 
0 0 0 
1 0 0 
0 1 0 
0 0 l j 

1 
1 
1 
0 
0 

0 0 
1 0 
0 1 
0 0 
0 0 

0 
0 
0 
1 
0 

0 
0 
0 
0 
1 

1 0 0 0 0 
1 1 0 0 0 
2 1 1 0 0 
3 2 1 1 0 
5 3 2 1 1 

Now we consider another factorization of 3>„. The n x n matrix C„ = [Cy] is defined as 
~FX 0 ••• 

' 

7 = 1, 
i = j , i.e., C„ = 
otherwise, 

F2 1 

Fn 0 1 

The next theorem follows by a simple calculation. 

Theorem 2.3: For n > 2, 9n = Q ^ © C„_X){I2 © C„_2) - (I„_2 © C2). 

Also, we can easily find the inverse of the Fibonacci matrix 9n. We know that 

ST' = 
1 0 Ol 

-1 1 0 
-1 0 1 , s:l = \ 

1 0 0 
0 1 0 
0 -1 1 

, and ^ = V © 4 -

Define Hk = G^1. Then 

H\ = Gf = I„, H2 = G2 = 7„_3 © SZ1 = I„_2 

Also, we know that 

1 0 
-1 1 and H„ = S„l-n un—3 • 

c_1 = 
Ft 0 ••• 0 

-F2 1 

-K 0 
and (7 t© CU)-1 = / , © < £ , . 

So the foUowing corollary holds. 

Corollary 2.4: 9£» = G^Gfc!, -G^G? = HJl^ -H^ = (7„_2 © Q" 1 - (7, © C^C?. 

From Corollary 2.4, we have 

9C 

1 
-1 
-1 
0 

0 
1 

-1 
-1 

0 
0 
1 

-1 

0 • 
0 • 
0 • 
1 • 

•• 0 
•• 0 
•• 0 
•• 0 

0 - 1 - 1 1 

(4) 
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Now we define a symmetric Fibonacci matrix ®Ln = [qfj] as, for i, j = 1,2,..., n, 

% q* [qu-2+%j-i> i + ^ h 

where qXQ = 0. Then we have qXj = qjX = F} and q2j = qj2 = FJ+l. For example, 

1 
1 
2 
3 
5 
8 
13 
21 
34 
55 

1 
2 
3 
5 
8 
13 
21 
34 
55 
89 

2 
3 
6 
9 
15 
24 
39 
63 
102 
165 

3 
5 
9 
15 
24 
39 
63 
102 
165 
267 

5 
8 
15 
24 
40 
64 
104 
168 
272 
440 

8 
13 
24 
39 
64 
104 
168 
272 
440 
712 

13 
21 
39 
63 
104 
168 
273 
441 
714 
1155 

21 
34 
63 
102 
168 
272 
441 
714 
1155 
1869 

34 
55 
102 
165 
272 
440 
714 
1155 
1879 
3025 

55 
89 
165 
267 
440 
712 
1155 
1869 
3025 
4895 

From the definition of %, we derive the following lemma. 

Lemma 2.5: For j > 3, q3j = F4(Fj_3 + Fj„2F3). 

Proof: We know that qX3 = Fx
2 + F2

2 +F3
2 = F3F4; hence, q^3 = F4F3 = F4(FQ + FXF3) for 

F0 = 0. By induction, q3j = F4(Fj_3 + Fj_2F3). • 

We know that q3A = qh3 = F3 and qX2 = #2,3 = F*- ^so w e s e e that q4j = qli4> q4f2 = q2A, 
and q4 3 = q3i4. By induction, we have the following lemma. 

Lemma 2.6: For j > 4, q4J = F4(Fj_4 + Fj_4F3 + Fj_3F5). 

From Lemmas 2.5 and 2.6, we know q5h $5j2, q$^ and g5j4. From these facts and the defi-
nition of %n, we have the following lemma. 

Lemma 2.7: For j > 5, q5J = F,._5F4(1+F3 + F5) + F ^ ^ ^ . 

Proof: Since ^ 5 = F5F6 we have, by induction, qSj = i^-_5i^(l + i^ -f- J^) + Fj_4F5F6. D 

From the definition of 2,„ together with Lemmas 2.5, 2.6, and 2.7, we have the following 
lemma by induction on i. 

Lemma2.8: For j>i>6, 

% = * } - A 0 + ^ +F5) + FJ_iF5F6 + Fj_iF6F7 + • • • + F ^ / ? + F,_/+1J^+1. 

Now we have the following theorem. 

Theorem 2.9: For w > 1 a positive integer, i f ^ . ! '-H2HX%=9^ and the Cholesky factoriza-
tion of aw is given by SLn = 9n9f, 

Proof: By Corollary 2.4, fl^^ • • • H2HX = 9;\ So, if we have 9~l\ = 9T
n, then the theo-

rem holds. 
Let X = [Xy] = 9~l%n. Then, by (4), we have the following: 
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Xij = *}-!, 
if 1 = 1, 
if i = 2, 

[~%~2t j ~ %-i, j + %• otherwise. 

Now we consider the case / > 3 . Since 2,w is a symmetric matrix, -qt-2,j ~cii-ij +% ~ 
~~9j, i-2 ~~ ?j, M + ?jt • Hence, by the definition of \ , xtJ - 0 for j +1 < *. So, we will prove that 
-%-2j-%-ij+%j =Fj-i+i for j * i. 

In the case in which i < 5, we have xfJ = î _z-+i by Lemmas 2.5, 2.4, and 2.7. 
Now suppose that j>i>6. Then, by Lemma 2.8, we have 

Xij = ~%-2, j ~~ Qi-l J + %j 

= (FH - FH+l - FH+2)F4(l + F3 + F5) + (FH - F,_,+1 - F^F.F, 
+ ••• + (Fj_, -Fj_M - Fj_i+2)Ft_3Ft_2 + (Fj_t - Ff_i+l - F;_,+3)i^_2i^_1 

+ (FM - FMJA)F,_yFt + FH^,FM. 

Since FJ_i-FJ_i+l-Fj_i+2 = -2FJ_i+1, FJ_t-FJ^x-FJ_i+3 = -3FJ^+l, and Fj_i-Fj_i+2 = -FJ_i+l, 
we have 

Since F4 = 3, using (3) we have 

Xg = -6-2i^-H + yo-O-i-1 _ m _ ^ l-F^-J^+F^ +i Fj-i+i-

Since Fr+1 = Fj+F^ and by (1) we have 

*y = 0 " 2F/_1F/_2 - F2i_3 - %_•& + F,FM)Fj^+i 
= (l-2Fi_1Fi_2-F2i_3 + F?)FJ_i+1 

= (1 - i f t -Fl2 -IF^F^ +Ft
2)FJ_i+l 

= (l-(Fi_l+Fi_1f+F?)FJ_i+1 

= (l-F/
2+F/

2)Fy_/+1 = F,_,.+1. 

Therefore, &~l2L„ = ®l, i.e., the Cholesky factorization of &„ is given by &„ = 9n 9T
n . D 

In particular, since &;1 = (S^)""1^1 = (9? )T&~\ we have 

a-•l _ 

3 
0 
-1 
0 

0 
0 
0 

0 
3 
0 
-1 

0 
0 
0 

-1 
0 
3 
0 

0 
0 
0 

0 •• 
-1 •• 
0 •• 
3 '• 

0 •• 
0 •• 
0 •• 

• 3 
• 0 
• -1 

0 
2 
-1 

0 
0 
0 
0 

-1 
-1 
1 

(5) 

From Theorem 2.9, we have the following corollary. 

2002] 207 



FACTORIZATIONS AND EIGENVALUES OF FIBONACCI AND SYMMETRIC FIBONACCI MATRICES 

Corollary 2.10: If k is an odd number, then 

[ ^ A K * - D if «is even. 

If A: is an even number, then 

te-^-i) if ^ is odd, 
[^A-<ifc-i)-F* if^ is even. 

For the case when we multiply the Ith row of 9n and the i* column of 3^ , we have the 
famous formula (2). Also, formula (2) is the case when k = 0 in Corollary 2.10. 

3, EIGENVALUES OF 1^ 

In this section, we consider the eigenvalues of 2,w. 
Let 2 = {iL = (xhx2,...,xn)eRn:xl>x2>-->xn}. For x , y e S , x-<y if Z f^ . ^Zf.^,, 

A = 1,2,..., n and if * = n, then the equality holds. When x < y, x is said to be majorized by y, or 
y is said to majorize x. The condition for majorization can be rewritten as follows: for x, y e 2), 
x -< y if Xf=0

 xn-t ^ Sf=o JV-*, k = 0,1,..., n - 2, and if k - n - 1 , then equality holds. 
The following is an interesting simple fact: 

YT- x (x,..., x) •< (x1?..., xn), where x = ~Jt^-

More interesting facts about majorizations can be found in [4]. 
An nxn matrix P = [/fy] is doubly stochastic if ptj>0 for i, j = 1,2,...,/i, '£JLi/fy = 1, 

j = 1,2,..., /i, and Z"=i /fy = 1, i = 1,2,..., n. In 1929, Hardy, Littlewood, and Polya proved that a 
necessary and sufficient condition that x -< y is that there exist a doubly stochastic matrix P such 
thatx = yP. 

We know both the eigenvalues and the main diagonal elements of a real symmetrix matrix are 
real numbers. The precise relationship between the main diagonal elements and the eigenvalues is 
given by the notion of majorization as follows: the vector of eigenvalues of a symmetrix matrix is 
majorized by the diagonal elements of the matrix. 

Note that det &n = 1 and det ®Ln = 1. Let Xl9 X2,..., Xn be the eigenvalues of \ . Since \ = 
9n <Pl and Zf=i F? = Fk+lFk9 the eigenvalues of % are all positive and 

(Fn+lFn> FnFn-h • • • > F2Fd < C*l> ^2> • • • > K)' 

In [1], we find the interesting combinatorial property, YZ=0(ri7) = Fn+l. So we have the 
following corollaries. 

Corollary 3.1: Let Xl9 X2,..., Xn be the eigenvalues of 2,w. Then 

feo(7))2"l if n is odd, 
Xt + X2 H \- Xn-\ 

teo(7))2 ifwiseven. 
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Proof: Since (Fn+lFn, FnFn_l,...,FzF1) -< (Xx, X2,..., Xn), and from Corollary 2.10, 

3 - H . u ^ M + i ) 2 - ^ if«isodd, J f c C r ) ) 2 - ! if»isodd, 
[ ( J ^ ) If n Is even, ( ^ 0 ( 7 ) ) 2 If n Is even. 

Corollary 3.2: Ifn is an odd number, then 

.1=0 

/ I - / 

If w Is an even number, then 

• 1 < nXx. 

M§C< J J ^ 
Proof: Let sn - Xx + X2 + • *• + Xn. Since 

^ • ^ — ^ H ( ^ A 2 — ^ » X 

we have Xn<^-<Xl. Therefore, the proof is complete. D 

From, equation (5), we have 

(3,3,...,3,2,1H 1 1 
KXn

 ? Xn_l
 ? ? Xt 

Thus, there exists a doubly stochastic matrix T = [tiJ] such that 

(3, 3,..., 3,2,1) = 1 1 
^n ^n-l ^ 1 

hi hi 
hi hi 

tnl tnl 

'In 
hn 

That is, we have -^tln +j^hn + -+i;^n =l and tln + t2n + ~>+tm = l. 

*i 

Xj_ 

(6) 

Lemma 3J: For each i - 1,2,..., n, tn^^ n~~^i' 
x 

Proof: Suppose that tn_{i_^n >^fj. Then 

In In nn # J _ j w _ j w _ j w _ j V 1 2 *• 

Since /1/f + t2n
 + '"+ tnn ~ 1 a n^ SLi^/ ™ w* ^ s yields a contradiction, so t ^ ^ n < -^. D 

From Lemma 3.3, we have 1 - (« -1) j-^_(/_1)5„ > 0. Let a = sn-(n-l). Therefore, we have 
the following theorem. 

Theorem 3.4: For (a, 1,1,..., 1) e % (a, 1,1,..., 1) < (21? 22,.. . , Xn). 

Proof: A necessary and sufficient condition that (a, 1,1,..., 1) -< (Xl912,..., X„) Is that there 
exist a doubly stochastic matrix P such that (a, 1,1,..., 1) = (Xl9 X2,..., Xn)P. 
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We define an n x n matrix P = [pfJ] as follows: 

P = 
Pll Pl2 '" Pl2 
Pi\ Pii *;° Pii 

\_Pnl Pnl "' Pnl\ 

where pi2=^~tn-(i-i%n asl£l Pa = ^~(n~^)Pn> ' = l,2,. . . , / i . Since J is doubly stochastic and 
Xt > 0 , # 2 > 0 , J = 1 ,2 , . . . , / I . By Lemma 3.3, ^ >0 , f = l,2,...,/f. Then 

A2+A2 + -+fl«2 = f L + 
f, nr\n 

1 2 
+ ...+ *1« _ i, 

#1 + (» - O^Z = 1 - (W - 1)^,2 + (« - *)#2 = 1 > 
and 

/711 + /?21 + - - + /7fll = l - ( « - l ) f l 2 + l - ( « - l ) / ? 2 2 + -.- + l - ( « - l ) p „ 2 

= n-«( /? i 2 + f t j + ••• + p r t ) + A 2 + f t 2 + ••' +P„2 = !• 

Thus, p is a doubly stochastic matrix. Furthermore, 

and 

= A1 + A2 + -+Al f-(/ i- l)(A,/i l 2+A2ft2 + -+Al lp l l 2) 
= l j + 22 + • • • + Xn - (n -1) = a. 

Thus, ( a J J ? . . . J ) = (A1 ?22 ?„. . ?2JP?so(a3l? l ? . . . ? l)-<(21 ?22 j . . . ?^). D 

From equation (6), we have the following lemma. 

Lemma 3.5: For k = 2,3, ...,/?, 2fc > 3 / ^ . 

/*wj£ From (6), for * > 2, 

1 + 1 +.. .+ 1 ^ l + 2 + 3 + .-.+3 = 3(*- l) . 
Al A2 Ak 

Thus, 
1 1 +4~+-+~J—\<3(k-l). 

Ak ^ A j A 2 Ak_x 

Therefore, for* = 2,3,..., n, Xk> 3 ^ . D 

Corollary 3.6: For i = l ,2 , . . . ,«-2 , 2^^ <(* + ! ) - 3 — ^ . In particular, a<2j , and ^ r n ^ 
A„<f 

Proof: If £ = 1, then. 2W + 2W-1 <2. By Lemma 3.5, we have Xn_x < 2 - j ~ ^ ? . Hence, by 
induction on n9 the proof is complete for k = 1,2,..., n - 2. In particular, by Theorem 3.4 and (6), 

<1 < i . D 3(w-l) - " » - 3 
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Since det2^ = XlX2..,Xn = 1, A223„.82w = ̂ -3 we have A\ 1 >Xl.,,Xn_l = j - . Thus, 

1 >l 
f i \n~l 

A v , u iy 

' i T"1 i 
Therefore, 
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