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1. INTRODUCTION

It is well known that a positive integer N is called a pentagonal (generalized pentagonal)
number if N =m(3m—1)/2 for some integer m > 0 (for any integer m).

Ming Luo [1] has proved that 1 and 5 are the only pentagonal numbers in the Fibonacci
sequence {F,}. Later, he showed (in [2]) that 2, 1, and 7 are the only generalized pentagonal
numbers in the Lucas sequence {L,}. In [3] we have proved that 1 and 7 are the only generalized
pentagonal numbers in the associated Pell sequence {(,} defined by

0,=0,=1 and Q,,=20,,+0, forn=0. ),
In this paper, we consider the Pell sequence {P,} defined by
F,=0,B=1, and P, ,=2P ,+P, fornz0 2)

n+l

and prove that P,,, Py, F,, and F; are the only pentagonal numbers. Also we show that F, F,,,
P,, P, F,, and F; are the only generalized pentagonal numbers. Further, we use this to solve the
Diophantine equations of the title.

2. PRELIMINARY RESULTS

We have the following well-known properties of {P,} and {(),}: for all integers m and n,

pnz%i and anan;ﬂn,whereaznﬁand,b’:l—w/f, 3)
P,=(-)™E, and Q,=(-1"Q, “)
0?2 =2P* +(-1), )
Oy, = 0,(0 +6FY), ©)
Ppn=2P,0,—(-)"F,_,. ™
If m is odd, then:

@) QZ+6P2=7 (mod8), (i) P,=1 (mod4), ®
(iii) O, =+1 (mod4) according as m=*1 (mod 4).
Lemma I: Ifn, k, and ¢ are integers, then P,,,,, = (=1)'**P P, (mod Q,).

Proof: 1f t =0, the lemma is trivial and it can be proved for # >0 by using induction on ¢
with (7). If ¢ <0, say t = —m, where m> 0, then by (4) we have

Bt = Bigpom = Pn+2(—k)m =(- 1)'(_“1)1:;1 (modQ ;)= (“l)t(kH)Pn (mod ),

proving the lemma.
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3. SOME LEMMAS

Since N =m(3m—1)/2 if and only if 24N +1=(6m—1)?, we have that N is generalized
pentagonal if and only if 24N +1 is the square of an integer congruent to 5 (mod 6). Therefore,
in this section we identify those » for which 24P, +1 is a perfect square.

We begin with

Lemma 2: Suppose n=+1 (mod 22-5). Then 24P, +1 is a perfect square if and only if 7= +1.

Proof: If n= 1, then by (4) we have 24P, +1=24P,,+1=5%. Conversely, suppose 7 = *1
(mod 22-5) and n ¢{—1,1}. Then n can be written as n=2-11"-5m+1, where » >0, 11{m, and
2|m. Taking

o {Sm if m= 12 or +8 (mod22),
m otherwise,
we get that

k=14 16, or 210 (mod 22), and n=2kg+1, where gis odd (in fact, g=11"-50r 11"). (9)
Now, by Lemma 1, (9), and (4), we get
24P, +1=24Py 4, +1=24(-1#*DP, +1 (mod 0,)
=24(-1)+1 (mod Q,) = -23 (mod J,).

24P, +1) (=23 (Qk)
2 = =| == (10)
5@ E
But modulo 23, the sequence {Q,} has period 22. That is, 0,,,,, = 0, (mod 23) for all integers
t>0. Thus, by (9) and (4), we get Q, = O,4, Ois, OF Oy (mod 23) =17, 7, or 5 (mod 23), so

&)@ 6)

(&)= a1

Therefore, the Jacobi symbol

and in any case

23
From (10) and (11), it follows that

(2413, +1

): -1 forne{-11},

showing 24P, +1 is not a perfect square. Hence, the lemma.
Lemma 3: Suppose n=+3 (mod 2*). Then 24P, +1 is a perfect square if and only if n = £3.

Proof: If n=13, then by (4) we have 24P, +1=24P,+1=11%2 Conversely, suppose
n=43 (mod 2*) and 7 ¢ {-3,3}. Then n can be written as n=2-3"-k +3, where r >0, 3/k, and
8|k. And we get that

k =18 or £16 (mod 48) and n=2kg +3, where g=3" is odd and k is even. (12)
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Now, by Lemma 1, (12), and (4), we get
24P, +1= 24Py 00, +1=24(-DE“D Py +1 (mod @,) = -119 (mod Q).

24P, +1) _(-119 (Qk )
= =] =k | 13
6 @
But, modulo 119, the sequence {(,} has period 48. Therefore, by (12) and (4), we get O, = O
or (.6 (mod 119) =101 or 52 (mod 119), and in any case,

(&) o

)z—i for m ¢ {-3,3},

Hence, the Jacobi symbol

From (13) and (14), it follows that

(2413;, +1
O

showing that 24P, +1 is not a perfect square. Hence the lemma.

Lemma 4: Suppose n=4 (mod 22-5). Then 24P, +1 is a perfect square if and only if 7= 4.

Proof: If n=4, then 24P, +1=24P,+1=172. Conversely, suppose n=4 (mod 22-5) and
n=4. Thenn can be writtenas n=2-3"-5m+4, where r >0, 2|m, and 3[/m. Taking

m  if m= 110 (mod 30),
" 15m  otherwise,
we get that

k =110 (mod 30) and n=2kg +4, where g is odd (in fact, g=3" or 37-5). (15)
Now, by Lemma 1 and (15), we get
24P, +1=24B,,,,+1=24(-1#**D P, +1(mod Q,)=-287 (mod Q).

24P, +1) (287 ( 0 )
1 = = . 16
=& 09
But, modulo 287, the sequence {(J,} has period 30. Therefore, by (15) and (4), we get O, =0,,0
(mod 287) = 206 (mod 287), so that

Hence, the Jacobi symbol

O | (&) —
(287 “\287)= 7" a7
From (16) and (17), it follows that
(M) =-1 forn=4,
s

showing that 24P, +1 is not a perfect square. Hence the lemma.
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Lemma 5: Suppose n=2 (mod 22-5-7). Then 24P, +1 is a perfect square if and only if n=2.

Proof: If n=2, then we have 24P, +1=24P,+1="7%. Conversely, suppose n=2 (mod
22.5.7) and n#2. Then n can be written as n=2-23"-5-7m+2, where r >0, 23|m, and 2|m.
Taking

Tm if m= 116 (mod 46),
k=45m ifm=412 14 +12 +22 (mod 46),
m  otherwise,
we get that

k=16,+8 +10,+14,+18, +20 (mod 46) and n =2kg +2, where g is odd
(in fact, g =23 -5-7, 23 -7, or 23’ -5). (18)

Now, by Lemma 1 and (18), we get
24P, +1=24F,,,, +1=24(-1**"D P, +1(mod Q,) =—47 (mod 0,).

24P, +1)_(-47 (Q,,)
n = ==k | 19
( O ) ( Or ) 47 @
But, modulo 47, the sequence {Q,} has period 46. Therefore, by (18) and (4), we get O, = (s,
Oig> Or10> Os14> Oirgs OF Opyo (mod 47) =5,13,26,33,15, or 35 (mod 47), so that

Hence, the Jacobi symbol

9\ _
( |=-1 (20)
From (19) and (20), it follows that
24P +1
2 =-1forn#2,
( O J

showing 24P, +1 is not a perfect square. Hence the lemma.

Lemma 6: Suppose n=6 (mod 22-3-5-7). Then 24P, +1 is a perfect square if and only if
n==6.

Proof: If n=6, then we have 24P, +1=24F+1=41%. Conversely, suppose n=6 (mod
22.3.5.7) and n#6. Then n can be written as n=2-3"-3-5-7m+2, where r >0, 2|m, and
3 |m, which implies that m = +2 (mod 6). Taking

(3.5m if m= +2,+32,+52,+76,+82,+86,+100,+124,
+130,+170,+178,0r +188 (mod 396),
Tm  ifm= 126,£62, or =88 (mod 396),

Im  if m= +4,+10,+14,+20,+22, +28,+40,+ 58,+ 74,+ 98, +104,
+110,+116,+136,+146,+148,+172, or +196 (mod 396),

m otherwise,
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we get that

ko =+8,+12,416,+30,+34,+38,+42, + 44, £ 46, £ 48, + 50,+ 56+ 60,

64,+ 66,%68,+70,+80,+84,+92,+94 +102,+106,+112,+ 118,
120,+122,+128 +134,+140,+142,+152,+ 154, + 158, +160, + 164,
166,+174,+176,+182,+184,+190,+192, + 194, + 202, + 204, + 206,
12,+214,+220,+222,+230,+232, + 236,+ 238+ 242, + 244, + 254, @1)
56,+262,+268,+274,+276,+278,+ 284, +290, + 294, + 302, + 304,
12,+316,+326,+328, +330,+ 332, + 336, 340, + 346, + 348, + 350,
52,+354,+358,+362,+366,+380,+384, or +388 (mod 792)

Mo H

H H

W NN

HH
(98]

and
n=2kg +6, where g is odd and % is even. (22)
Now, by Lemma 1 and (22), we get
24P, +1=24Py, ¢ +1=24(-1F*DF +1 (mod Q,) = -1679 (mod Q).

24P, +1)_(-1679)_( Q
( ) H 0. )“(1659)' @

But, modulo 1679, the sequence {Q,} has period 792. Therefore, by (21) and (4), we get

Hence, the Jacobi symbol

0, =577,1132, 973,485,143,1019, 923, 737, 141, 109, 513, 97, 329, 1015,
829, 601,1098,577,1351,1144,513, 485,362, 348,1382,1569,1316,
316,808, 163,879,1015,1611,1604, 973, 925,1316,923,1151, 1019,
1589, 1382, 766,1535,1604, 329, 370, 163, 76, 1404, 26, 1385, 97, 122,
1535,944,1613,143,1589, 141, 1144, 1385, 1132, 370, 601, 1098, 1267,
582,316,109,1175,362, 348, 47,1613, 766, 925, 582,1351, 808, 139, 26,
76,879,1267,122,1569, or 1175 (mod 1679), respectively.

And for all these values of %, the Jacobi symbol

(.1%)=_1. (24)

From (23) and (24), it follows that

(24P" +1)= -1 forn#6,
O

showing that 24P, +1 is not a perfect square. Hence the lemma.

Lemma 7: Suppose n=0 (mod 2-3-7%-13). Then 24P, +1 is a perfect square if and only if
n=0.

Proof: If n=0, then we have 24P, +1=24P +1=1>. Conversely, suppose n=0 (mod
2-3-7*.13) and for n# 0 put #=2-72-13-3"-2, where r > 1 and 3/z. We choose m as follows:
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1337 if r = 1 (mod4) according as z = +1 (mod 3),
7-3"  if r =33 (mod 4) according as z = £1 (mod 3),
7%.3" ifr=0 (mod4),z=1(mod3) orr=2 (mod4),z=2 (mod3),
3 ifr=2 (mod4),z=1(mod3) orr =0 (mod4),z=2 (mod 3).

m=

Then n =2m(3k £ 1) for some integer & and odd m. Since, for » >1, we have 3" =3, 9, 27, or
21 (mod 30) according as 7 =1, 2, 3, or 0 (mod 4), it follows that

m= %9 (mod 30) according as z = £1 (mod 3). 2%5)
Therefore, by Lemma 1, (4), (6), and the fact that m is odd, we have
24P, +1=24P, 3,1 190 = 24(-1C"D P, +1 (mod O;,)
=+24P, +1 (mod Q2 +6P2) according as z = +1 (mod 3).

Letting w, = 02 +6P2 and using (5), (7), and (8), we obtain the Jacobi symbol:
(24}; +1 J i (J_rzz;sz + 1} B (i48Qum -Q2 +2P,3} ~ (i48Qum +8P,3J

_(2)(B,\(60,+P, _!’iﬁQm+Pm\‘§__ W,
A\ w, )\, W, QL W ) \¥60,+B,

_ _((J_r6Qm + P )60, — P,) +217F? } _ _( 217 )

+60,,+ P, 60, + P,
60, tP, H
= 2=m = im | | = +
( 217 ) (217), where H,, =60, £ P,
But since
modulo 217, the sequence {H,,} is periodic with period 30. (26)

That is, H,,5,, = H, (mod 217) for all integers #>0. And H,y =60, £ Py = %12 (mod 217).
Therefore, by (25) and (26), we get

24P, +1 __(ilz)__l
w, ) \217) ©

As a consequence of Lemmas 2-7, we have the following lemmas.

Lemma 8: Suppose n=0,£1,2, £3,4, or 6 (mod 152880). Then 24P, +1 is a perfect square if
and only if =0, +1,2, +£3,4, or 6.

Lemma 9: 24F,+1 is not a perfect square if n# 0, +1,2, +3,4, or 6 (mod 152880).

Proof: We prove the lemma in different steps, eliminating at each stage certain integers n
congruent modulo 152880 for which 24P, +1 is not a square. In each step, we choose an integer
m such that the period & (of the sequence {£,} mod m) is a divisor of 152880 and thereby elimi-
nate certain residue classes modulo £. For example:

(a) Mod 41. The sequence {P,} mod 41 has period 10. We can eliminate »=28 (mod 10),
since 24F, +1= 35 (mod 41) and 35 is a quadratic nonresidue modulo 41. There remain #=0, 1,
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2,3,4,5,6,7, and 9 (mod 10) or, equivalently n=0,1,2,3,4,5,6,7,9, 10, 11, 12, 13, 14, 15,
16, 17, and 19 (mod 20).
(b) Mod 29. The sequence {F,} mod 29 has period 20. We can eliminate n=7, 12, 13, 14,
16, and 18 (mod 20), since they imply, respectively, 24F, +1=26, 11, 26, 3, 3, and 11 (mod 29).
Thereremain n=0, 1,2, 3,4, 5, 6,9, 10, 11, 15, 17, or 19 (mod 20) or, equivalently, n=0, 1, 2,
3,4,5,6,9, 10,11, 15, 17, 19, 20, 21, 22, 23, 24, 25, 26, 29, 30, 31, 35, 37, or 39 (mod 40).
Similarly, we can eliminate the remaining values of n. Afier reaching modulo 152880, if there

remain any values of n, we eliminate them in the higher modulos (i.e., in the multiples of 152880).
We tabulate these in Tables A and B.

4. MAIN THEOREM

Theorem 1:
(a) P, is a generalized pentagonal number only for n =0, £1,2, £3,4, or 6.
(b) P, is a pentagonal number only for n=+1 £3,4, or 6.

Proof:

(a) From Lemmas 8 and 9, the first part of the theorem follows.

(b) Since an integer N is pentagonal if and only if 24N +1 = (6m—1)%, where m is a positive
integer, and since P, =0, B, =2, we have 24F +1# (6m~1)*> and 24P, +1= (6m—1)* for posi-
tive integer m, from which it follows that 7, and 7, are not pentagonal.

5. SOLUTIONS OF CERTAIN DIOPHANTINE EQUATIONS

If D is a positive integer that is not a perfect square, it is well known that x? - Dy? = +1 is
called the Pell equation and that if x, + y,/D is the fundamental solution of it (i.e., x;, and y, are
least positive integers), then x_ +y,+/D = (x; +3,/D)" is also a solution of the same equation;
conversely, every solution of it is of this form.

Now, by (5), we have 0? = 2P% +(-1)" for every n. Therefore, it follows that

Oy, +~2B,, is a solution of x*—2)? =1, @n
while
0y01 ++2P,,,; is a solution of x* —2y* = -1. (28)

Thus, the complete set of solutions of the equations x* —2y* = *1 is given by
x=10, y==F, (29)
Theorem 2: The solution set of the Diophantine equation

2x? = y}(3y—1)* -2 (30)
is {(+11), (+7,2)}.

Proof: Writing ¥ = y(3y —1)/2, equation (30) reduces to the form
¥t -2¥%=-1, (€2))

whose solutions are, by (28), 0,,.; +v2B,,,, for any integer n.
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TABLE A
Modulus | Period Required values of n where {241’,, +1] =_1 Left out \:alues o.f. n gmod t)
m k m where t is a positive integer
41 10 | 8. 0,+1,2,+£3,4,50r 6 (mod 10)
29 20 17,12,13, 14 and 16. 0, %1, 2,43, 4, £5, 6, 9 or 10(mod 20)
19 40 | 5,15,17,19,21,22,23,25,26 and 335. 0,%1,2,+3,4,6,+9, %10, £11 or 20
59 40 | 24. (mod 40)
241 80 | £9, £10, £29, 30, £31, 39, 44 and 50. 0,1, 2, £3, 4, 6, £11, £20, £37, 40, 42
or 46 (mod 80)
31 30 | £7, %11, 12, 14, 24 and 26.
269 60 | £9,£17, 221 and 22.
601 | 120 | 46. 0, £1, 2, £3, 4, 6, +60, 100, £117,
2281 1 120 { 20 and 40. 120 or 122 (mod 240)
1153 48 1 +5,8,28,30 and 32.
239 14 | £5,7,8 and 10.
13 28 | +11,16,20 and 26.
113 56 | £25,427 30,40 and 46.
337 56 | 12 and 18.
71 70 {60 and 62. 0, £1, 2, £3, 4, 6, 420, 840 or 1260
83| 168 | 28,169 and £71. (mod 1680)
139 | 280 | 42.
281} 280 | 126.
37633 | 336 | 165 and 170.
79 26 |+7,10,13, 14,20 and 22.
599 26 | 8,£9,16 and 24.
313 78 1£11, 18, £25, £27, 28, £29, +£31, 32, £37, 38, 58
and 64. 0,£1, 2,3, 4, 6, 5460, 10920 or
521 ) 260 | £21, %23, 44, 80, £83, 160, 186, 240 and 246. 16380 (mod 21840).
1949 | 260 | £37,%57,+63, +£81, 82 and 122.
1091 1 312 § 52,54 and 168.
181 | 364 | 168,286 and 338.
1471 98 | 11, 14, £15, 16,17, 18, £27, 28, £29, 30, 39,
46, 48, 56, 58, 60 and 76.
293 § 196 | £25, £31, £53, £55, 84, +85, 86, 88, 140 and 0, £1, 2,3, 4, 6, 38220, 76440 or
172, 114660 (mod 152880).
587 | 1176 | +335, 338, 510, 678, 756, 846, 1012 and 1014.
2939 | 5880 |} 2520 and 2522.

We now eliminate: 7= 38220, 76440, or 114660 (mod 152880).

Or equivalently:

240

n = 38220, 76440, 114660, 191100, 229320, or 267540 (mod 305760).
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TABLE B
Medulus | Period Required values of n where {24Pn+l] =_1 Left out v.alues o‘f n (mod t)
m k L m where t is a positive integer
97 96 | +12,36 and 60. +76440 (mod 305760) or equivalently
+76440, +229320 (mod 611520)
449 | 448 |56, 168. Completely eliminated under
2689 11344 | 840, 1176. modulo 611520.

Now x=a, y =b is a solution of (30) < a ++/2b(3b—1)/2 is a solution of ) <> a =0,
and b(3b—1)/2 = B,,,, for some integer n. But we know by Theorem 1(a) that P, is generalized
pentagonal if and only if k£ =0, £1,2, +3,4, or 6. Therefore, we have either

i a=0,=-1 bBb-1)/2=P,=1 () a=0, =1, b(3b-1)/2=F=1,
() a=0,5;=-7, b(3b-1D/2=P,=5; @iv) a=0;=7, b3b-1)/2=HF=5.
Solving the above equations, we get the required solution set of equation (30).
We can prove the following theorem in a similar manner.
Theorem 3: The solution set of the Diophantine equation 2x? = y*(3y—1)*+2 is
{(£1,0), (£3, - 1), (17, 3), (99, — 280) }.
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