A DIVISIBILITY PROPERTY OF BINARY LINEAR RECURRENCES

Neville Robbins
Mathematics Department, San Francisco State University, San Francisco, CA 94132
E-mail: robbins@math.sfsu.edu
(Submitted April 2000-Final Revision October 2000)

INTRODUCTION

If A is a positive integer, let the polynomial $\lambda^{2}-A \lambda-1$ with discriminant $D=A^{2}+4$ have the roots:

$$
\begin{equation*}
\alpha=(A+\sqrt{D}) / 2, \quad \beta=(A-\sqrt{D}) / 2 . \tag{1}
\end{equation*}
$$

Define a primary binary linear recurrence $\left\{u_{n}\right\}$ and a secondary binary linear recurrence $\left\{v_{n}\right\}$ by

$$
\begin{equation*}
u_{n}=\left(\alpha^{n}-\beta^{n}\right) /(\alpha-\beta), v_{n}=\alpha^{n}+\beta^{n}, \tag{2}
\end{equation*}
$$

where $n \geq 0$. Equivalently, let

$$
\begin{equation*}
u_{0}=0, u_{1}=1, u_{n}=A u_{n-1}+u_{n-2} \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
v_{0}=2, v_{1}=A, v_{n}=A v_{n-1}+v_{n-2} \tag{4}
\end{equation*}
$$

for $n \geq 2$. Let

$$
t= \begin{cases}D & \text { if } A \text { is odd } \tag{5}\\ D / 4 & \text { if } A \equiv 0(\bmod 4), \\ D / 8 & \text { if } A \equiv 2(\bmod 4) .\end{cases}
$$

Note that, in each case, t is an integer such that $t \equiv 1(\bmod 4)$.
Let ($\frac{a}{b}$) denote the Jacobi symbol.
In this note, we prove a divisibility property of the $\left\{u_{n}\right\}$ and of the $\left\{v_{n}\right\}$. In so doing, we generalize a recent result by V. Drobot [2] about Fibonacci numbers (the sequence $\left\{u_{n}\right\}$ with $A=1$). It has been called to our attention that an alternate proof of Drobot's result follows from [1]. Note that, if $A=2$, then the corresponding u_{n} sequence is called the Pell sequence, and is denoted P_{n}. Thus, we have $P_{1}=1, P_{2}=2, P_{3}=5, P_{4}=12, P_{5}=29$, and so forth.

THE MAIN RESULTS

Theorem 1: Let $\left\{u_{n}\right\}$ and t be defined as above. Let p be an odd integer such that $q=2 p-1$ is prime, and $q \| t$. If $A \equiv 2(\bmod 4)$, let $\left(\frac{q}{t}\right)=-1$. If $A \equiv 2(\bmod 4)$ but $A>2$, let $q \equiv \pm 1(\bmod 8)$ and $\left(\frac{q}{t}\right)=-1$ or $q \equiv \pm 3(\bmod 8)$ and $\left(\frac{q}{t}\right)=1$. If $A=2$, let $q \equiv \pm 3(\bmod 8)$. Then $q \mid u_{p}$. Furthermore, u_{p} is composite unless $u_{p}=q$, which can occur only in the cases $(A, p, q)=(1,7,13)$ (Fibonacci) or $(A, p, q)=(2,3,5)$ (Pell).

Proof: Equation (1) implies

$$
\begin{equation*}
\alpha-\beta=\sqrt{D} \quad \alpha \beta=-1 . \tag{6}
\end{equation*}
$$

Applying (2) and (6) with $n=p$, we obtain $\sqrt{D} u_{p}=\alpha^{p}-\beta^{p}$. Squaring and applying (6), we get

$$
\begin{equation*}
D u_{p}^{2}=\alpha^{2 p}+\beta^{2 p}+2 . \tag{7}
\end{equation*}
$$

Multiplying by $2^{2 p-1}$ and applying (1), we have

$$
\begin{equation*}
2^{2 p-1} D u_{p}^{2}=\frac{1}{2}\left\{(A+\sqrt{D})^{2 p}+(A-\sqrt{D})^{2 p}\right\}+4^{p} \tag{8}
\end{equation*}
$$

If we expand the right member of (8) via the binomial theorem and then simplify, we obtain

$$
\begin{equation*}
2^{2 p-1} D u_{p}^{2}=A^{2 p}+\sum_{k=1}^{p-1}\binom{2 p}{2 k} A^{2 p-2 k} D^{k}+D^{p}+4^{p} \tag{9}
\end{equation*}
$$

Since $q=2 p-1$ is prime by hypothesis, we have

$$
q \left\lvert\,\binom{ 2 p}{2 k}\right. \text { for } 1 \leq k \leq p-1
$$

Furthermore, by Fermat's Little Theorem, we have $A^{2 p} \equiv A^{2}(\bmod q), 4^{p} \equiv 4(\bmod q), 2^{2 p-1} \equiv 2$ $(\bmod q)$. Thus, we have

$$
2 D u_{p}^{2} \equiv A^{2}+4+D^{p} \equiv D+D^{p} \equiv D\left(1+D^{p-1}\right)(\bmod q),
$$

which yields $2 u_{p}^{2} \equiv 1+D^{p-1}(\bmod q)$.
Since $p-1=(q-1) / 2$, Euler's criterion yields

$$
2 u_{p}^{2} \equiv 1+\left(\frac{D}{q}\right)(\bmod q)
$$

Therefore, to prove that $q \mid u_{p}$, it suffices to show that $\left(\frac{D}{q}\right)=-1$. If $A \neq 2(\bmod 4)$, then $\left(\frac{D}{q}\right)=\left(\frac{t}{q}\right)$. Since $t \equiv 1(\bmod 4)$ and $t>1$, we have

$$
\left(\frac{t}{q}\right)=\left(\frac{q}{t}\right)=-1
$$

by hypothesis, so we are done.
If $A=2$, so that $D=8$, then

$$
\left(\frac{D}{q}\right)=\left(\frac{8}{q}\right)=\left(\frac{2}{q}\right)=-1
$$

since $q \equiv-3(\bmod 8)$ by hypothesis. More generally, if $A \equiv 2(\bmod 4)$ but $A>2$, then

$$
\left(\frac{D}{q}\right)=\left(\frac{8 t}{q}\right)=\left(\frac{2 t}{q}\right)=\left(\frac{2}{q}\right)\left(\frac{t}{q}\right)=\left(\frac{2}{q}\right)\left(\frac{q}{t}\right)
$$

since $t \equiv \pm 1(\bmod 4)$. By hypothesis, we have $\left(\frac{2}{q}\right)=-\left(\frac{q}{t}\right)$ so we are done.
The last sentence of the conclusion of Theorem 1 is now an easy corollary.
Remarks: If $A=1$, then $u_{n}=F_{n}$. (This was the case considered in [2].) If t is composite, then the determination of congruence conditions on $q(\bmod t)$ such that $\left(\frac{q}{t}\right)=\left(\frac{t}{q}\right)= \pm 1$ may be achieved by factoring t as a product of primes and then applying the Chinese Remainder Theorem.
Corollary 1: If P_{n} denotes the $n^{\text {th }}$ Pell number, the integer $p>3, p \equiv 3(\bmod 4)$, and $q=2 p-1$ is prime, then $q \mid u_{p}$ and $q<u_{p}$.

Proof: This follows from Theorem 1, with $A=2$.

We now present an analogous theorem regarding $\left\{v_{n}\right\}$, namely,
Theorem 2: Let $\left\{v_{n}\right\}$ and t be defined as in the Introduction. Let p be an odd integer such that $q=2 p+1$ is prime and $q \nmid t$. If $A \neq 2(\bmod 4)$, let $\left(\frac{q}{t}\right)=-1$. If $A \equiv 2(\bmod 4)$ but $A>2$, let $q \equiv \pm 1(\bmod 8)$ and $\left(\frac{q}{t}\right)=-1$ or $q \equiv \pm 3(\bmod 8)$ and $\left(\frac{q}{t}\right)=1$. If $A=2$, let $q \equiv \pm 3(\bmod 8)$. Then $q \mid v_{p+1}$.

Proof: The proof is similar to that of Theorem 1 and is therefore omitted here.

REFERENCES

1. D. Bloom. "Problem H-494." The Fibonacci Quarterly 33.1 (1995):91.
2. V. Drobot. "Primes in the Fibonacci Sequence." The Fibonacci Quarterly 38.1 (2000):7172.

AMS Classification Number: 11B35

