PARTITION FORMS OF FIBONACCI NUMBERS

Sun Ping

Dept. of Mathematics, Northeastern University, Shenyang, 110006, P.R. China
(Submitted July 2000-Final Revision November 2000)
In the notation of Comtet [1], define the partitions of integer n as $n=\sum i k_{i}$, where $i \geq 1$ is a summand and $k_{i} \geq 0$ is the frequency of summand i. It is known that the number of subsets of an n-element set is 2^{n} and

$$
\begin{equation*}
2^{n}=\sum_{\sum i k_{k}=n+1} \frac{\left(\sum k_{i}\right)!}{\Pi k_{i}!} \tag{1}
\end{equation*}
$$

because of

$$
\sum_{\substack{\sum i k_{i}=n+1 \\ \sum k_{i}=k}} \frac{1}{\Pi k_{i}!}=\frac{1}{k!}\binom{n}{k-1}
$$

Equation (1) shows that the number of subsets of an n-element set is related to the number of summands in partitions of n. It is surprising that the sums on the right of identity (1) become Fibonacci numbers when some summands of the partitions of n no longer appear.

By means of generating functions, this article obtains the following result.
Theorem: For any $n \geq 1$, Fibonacci numbers satisfy

$$
\begin{align*}
& F_{n}=\sum_{\substack{\sum i k_{2}=n+1 \\
k_{1}=0}} \frac{\left(\sum k_{i}\right)!}{\Pi k_{i}!} \tag{a}\\
& F_{n}=\sum_{\substack{\sum i k_{i}=n \\
\text { all } k_{2 i}=0}} \frac{\left(\sum k_{i}\right)!}{\Pi k_{i}!}
\end{align*}
$$

For example, the partitions of the integer 7 are

$$
\begin{aligned}
& 7,1+6,2+5,3+4,1+1+5,1+2+4,1+3+3,2+2+3,1+1+1+4,1+1+2+3 \\
& 1+2+2+2,1+1+1+1+3,1+1+1+2+2,1+1+1+1+1+2,1+1+1+1+1+1+1 .
\end{aligned}
$$

From (2), we have

$$
F_{6}=\frac{1!}{1!}+\frac{2!}{1!\cdot 1!}+\frac{2!}{1!\cdot 1!}+\frac{3!}{2!\cdot 1!}=1+2+2+3=8
$$

and from (3),

$$
F_{7}=\frac{1!}{1!}+\frac{3!}{2!\cdot 1!}+\frac{3!}{1!\cdot 2!}+\frac{5!}{4!\cdot 1!}+\frac{7!}{7!}=1+3+3+5+7=13
$$

The Theorem can be proved easily by using the recurrence relations of Fibonacci numbers and the results of Bell polynomials $B_{n, k}[1]$:

$$
\frac{1}{k!}\left(\sum_{m \geq 1} x_{m} \frac{t^{m}}{m!}\right)^{k}=\sum_{n \geq k} B_{n, k} \frac{t^{n}}{n!}, \quad k=0,1,2, \ldots,
$$

and

$$
\frac{1}{n!} B_{n, k}\left(x_{1}, x_{2}, \ldots, x_{n-k+1}\right)=\sum_{\substack{\sum i k_{i}=n \\ \sum k_{i}=k, k_{i} \geq 0}} \frac{\Pi x_{i}^{k_{i}}}{\Pi k_{i}!(i!)^{k_{i}}} .
$$

In this article, $\left[t^{n}\right] f(t)$ means the coefficient of t^{n} is in the formal series $f(t)$, so that

$$
\sum_{n \geq 1} F_{n} t^{n}=\frac{t}{1-t-t^{2}} \quad \text { can be written as } \quad F_{n}=\left[t^{n}\right] \frac{t}{1-t-t^{2}} .
$$

Proof of Theorem: (a) It is well known that $F_{n+2}=F_{n}+F_{n+1}, n \geq 1$, then

$$
\begin{aligned}
F_{n} & =\left[t^{n+2}\right] \frac{t}{1-t-t^{2}}-\left[t^{n+1}\right] \frac{t}{1-t-t^{2}} \\
& =\left[t^{n+1}\right] \frac{1-t}{1-t-t^{2}}=\left[t^{n+1}\right] \frac{1}{1-\left(\frac{t^{2}}{1-t}\right)}=\left[t^{n+1}\right] \frac{1}{1-\left(t^{2}+t^{3}+t^{4}+\cdots\right)} \\
& =\sum_{k \geq 1}\left[t^{n+1}\right]\left(t^{2}+t^{3}+t^{4}+\cdots\right)^{k}=\sum_{k \geq 1} \sum_{\substack{\sum_{k} k_{i}=n+1 \\
k_{1}=0, \sum k_{i}=k}}\left[\frac{k!}{\prod_{i \geq 1} k_{i}!}\right]=\sum_{\substack{i k_{k} \\
k_{1}=0}} \frac{\left(\sum k_{i}\right)!}{\Pi k_{i}!} .
\end{aligned}
$$

(b) The proof is similar; notice that $F_{n}=F_{n+1}-F_{n-1}, n \geq 2$. Thus, for any $n \geq 2$,

$$
\begin{aligned}
& F_{n}=\left[t^{n+1}\right] \frac{t}{1-t-t^{2}}-\left[t^{n-1}\right] \frac{t}{1-t-t^{2}} \\
& =\left[t^{n}\right] \frac{1-t^{2}}{1-t-t^{2}}=\left[t^{n}\right] \frac{1}{1-\left(\frac{t}{1-t^{2}}\right)}=\left[t^{n}\right] \frac{1}{1-\left(t+t^{3}+t^{5}+t^{7} \cdots\right)} \\
& =\sum_{k \geq 1}\left[t^{n}\right]\left(t+t^{3}+t^{5}+t^{7} \cdots\right)^{k}=\sum_{k \geq 1} \sum_{\substack{\text { all } \\
k_{2 i}=0, k_{k}=n \\
i k_{i}=k}}\left[\frac{k!}{\prod_{i \geq 1} k_{i}!}\right]=\sum_{\substack{\sum i k_{k}=n \\
\text { all } k_{2 i}=0}} \frac{\left(\sum k_{i}\right)!}{\Pi k_{i}!} .
\end{aligned}
$$

Remark 1: The number of summands on the right of (2) is $p(n+1)-p(n)$, and that of (3) is $q(n)$. Here, $p(n)$ is the number of partitions of n and $q(n)$ is the number of partitions of n into distinct summands, see [1].
Remark 2: It is well known that Fibonacci numbers have a simple combinatorial meaning, F_{n} is the number of subsets of $\{1,2,3, \ldots, n\}$ such that no two elements are adjacent. Comparing with (1), the Theorem shows that Fibonacci numbers have a kind of new combinatorial structure as a weighted sum over partitions.

ACKNOWLEDGMENT

The author would like to express his thanks to the anonymous referee for valuable suggestions.

REFERENCES

1. L. Comtet. Advanced Combinatorics: The Art of Finite and Infinite Expansion. Boston: D. Reidel, 1974.
AMS Classification Numbers: 05A17, 11B39, 11P83
