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In the notation of Comtet [1], define the partitions of integer »# as n=3ik,, where i>1is a
summand and %, 2 0 is the frequency of summand 7. It is known that the number of subsets of an
n-element set is 2" and
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Equation (1) shows that the number of subsets of an n-element set is related to the number of
summands in partitions of n. [t is surprising that the sums on the right of identity (1) become
Fibonacei numbers when some summands of the partitions of # no longer appear.

By means of generating functions, this article obtains the following result.

Theorem: For any n 2 1, Fibonacci numbers satisfy
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For example, the partitions of the integer 7 are
7, 1+6, 245 3+4, 14148 14244, 14343, 24243, 1+1+14+4, 1414243,
1+2+2+2, 1+14+014+1+3, 141414242, 14141414142, T4+14+0140414+1+1

From (2), we have
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and from (3},
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The Theorem can be proved easily by using the recurrence relations of Fibonacci numbers
and the results of Bell polynomials B, ; [1]:
Nk

1 '__ﬂ P P
;%—i'{}.ﬁx J =ZBW,‘F‘;!—§’ k:O,LZ,.,.?

m o]
mzl ! nzk
and

2002] 287



PARTITION FORMS OF FIBONACCI NUMBERS

1 I
—B, . (x,%,,....,%X,_ = ; :
7 n,k( 1> 425 n k+l) Z;'.:n Hk,'(ll)k‘

Tk,=k, k;20

In this article, [#"]f(¢) means the coefficient of #” is in the formal series f(®), so that

Y Ep= = can be written as =["}—.
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Proof of Theorem: (a) It is well known that F, , = F, + F,,;, n>1, then
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(b) The proofis similar; notice that F, = F,,, - F,_;, n=2. Thus, forany n>2,
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Remark 1: The number of summands on the right of (2) is p(n+1)— p(n), and that of (3) is
q(n). Here, p(n) is the number of partitions of # and ¢(n) is the number of partitions of » into
distinct summands, see [1].

Remark 2: 1t is well known that Fibonacci numbers have a simple combinatorial meaning, F, is
the number of subsets of {1,2,3, ..., n} such that no two elements are adjacent. Comparing with
(1), the Theorem shows that Fibonacci numbers have a kind of new combinatorial structure as a
weighted sum over partitions.
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