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1. INTRODUCTION

The concept of a Riordan array was defined in [4] as follows: Let % =R][x] be a ring of
formal power series with real coefficients in some indeterminate x. Let g(x) € % and let f(x) =
Yo fux* € F with £, = 0 (in this paper we assume f; # 0). Let d,(x) = g(x), d, = g)}(f (x))*,
and d, , =[x"]d, (x), where [x"]d,(x) means the coefficients of x" in the expansion of d,(x) in
x. Then an infinite lower triangular array, D ={d, , |k, n €N, k <nj}, is obtained. We also write
D =(g(x), f(x)) and call D a Riordan array. In this paper we obtain some new relations between
two sequences and some new inverse relations by using Riordan arrays. Some results are a gen-
eralization of [2] and [3].

2. SEQUENCES RELATED TO RIORDAN ARRAYS
Let a(x) =X; a,x* € F and D =(g(x), f(x)). Let

1 o0
h)=——=ShxteF,
=2 é"x ©

A =a(f ()= At T,
k=0

and w
s(x) = gx)A(x) =D sxF e F.
k=0

Theorem 1: We have

k=0 \i=0

4,= Z (Zdi,khn—i)ak' 1
Proof: By Theorem 1.1 in [5], we have

3 d, s, = [ Ig@a(f () = .

k=0
From s(x) = g(x)A(x), A(x) = s(x)h(x), we have

4,= Zsihn—i = Z (Zdi,kak)hn—i = Z (Zd, khn—’i))ak“
i=0 i=0 \ k=0 k=0 \i=0

This completes the proof. O
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Theorem 2: We have

a, = Z _n,kAk: @
k=0
where J,, ¢ can be obtained by using one of the following Lagrange inversion formulas (see [1],
pp. 148-52):
ki oo )\
- (L9, ®
x

7 2n-k (_])J( _k) —n=j[n—k+j i
=k . J J g, 4
7. =k(*", )Z C ("3 e @

Proof: By A(x)=a(f(x)), we have a(x)= A(f(x)), where FUf ) = f(f(x)=x and
f(0)=0. By [1] and Theorem 1.1 in [5], we obtain a, = X}, d, .k Ay, in which

T, =[1Fe) =% ""‘](f (")]_"
or

&, =17 =7 4) S ER () e ey,

Sntj

This completes the proof. O

We can combine Theorems 1 and 2 to obtain a generator of an inverse relation.
Theorem 3: We have the following inverse relation,

4= (Zdi,khn—ijak
I:::O I=0 (5)

an = Zdn,kAk’

k=0

where Jn « can be obtained by using (3) or (4).

In addition, we obtain many new identities by using (1) or (2). The interested reader can
consult [2] and [3].

Example 1: Let g(x) = and f(x)= ” "' . Then A(x)=1-ax and

- B Y i nw(n+(s-Dk
=[x ]1 ax((l ax)‘) =ba lk( sk )
By (1), we have

fe S (S (M

k=0 \i=0

i(bkl n—l (n+(s l)k) Bl gt (n+(ss Dk - 1))0 _Zbkl ,,_k,(n+(:k—j)lk~l)ak.

k=0 k=0

1——ax
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By (2) and (3), we have

n—k " nl—-k _ni~ky—-n k
[ ](x(l ax)} =yt (”l k)’

n-tp-nl K sn
a,= Learp k()4
So we obtain the following inverse relation:
o i R+ {s—Dk -1
A71 = E bkla kl( (Sk _l)éi )ak’

a, ‘Z( gy kb—nlk(nl k)Ak-

k=0

Letting s=7=1, a=1, and 5 = 5, we can obtain Theorems 3 and 4 in [3]. O
Example 2: Let D, =(1,log(1~x))=(d, ;) and D, = (1, (1-€")) =(d2 ). Then
1 o kg Ty LYY e k!
dy, i =[x"1(log(1-x))" = (-1)"[x"]} log 15/ =CU a0 k)

and
di, =[x"1(-e") = (D"} e - D = (_l)k%%(n, k).

From A(x) = a(log(1-x)), we find a(x) = A(1-¢*). So by (1) we have

4,= i(— Eg o, K)ay,

a, ~Z( N L5y, k) Ay,

where s,(n, k) and s,(n, k) are the Stirling numbers of both kinds and have the following generat-
ing functions (see [5]), respectively:

(logﬁ) =i " sl(n myx"; -D" = Z sz(n m)x”.

n=0 n—O
3. SEQUENCES RELATED TO EXPONENTIAL RIORDAN ARRAYS
Let
0 xk
J(x)= Z.f kLY
Par sl 3
We introduce a new notation, (x*)f(x) = f, and assume f, =0, f; #0. Let
0 xk
g(x)= ng 5, & *0.
i k!

For an infinite lower triangular array E = {e, ; |n,k €N, k <n}, if
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= (g LT D (>0,

for fixed k, then we write E = (g(x), f(x)) and say that (g(x), f(x)) is an exponential Riordan
array.
Let

B =38, %
(x) = k§=:6 (g
and let E = (g(x), f(x)) be an expone1tial Riordan array. Let

k
p( )—g(x) ];)pk kv B(x) b(f(x)) ZBk k"

and
0 xk
q() =g()B() =3 g 77
o k!
For the exponential Riordan arrays, we have the following theorem as Theorem 1.1 in [5].
Theorem 4: We have
2 &by = 7)()B(f (x)). ®)
k=0
Proof:
3ot = 3 e LA, - eimis ), 0

Example 3: Let E = (e*, — x) be an exponential Riordan array. Then
ere =06 = ot (7).

For

=L FEL

n=0

where a,b=(1£+/5)/2 and F, is the n Fibonacci number defined by F,
=1 (see [2]), by (6) we have

S0 (7)A=wenn - e €= ey be) = F,

=F,+F

n—=1>

Ry =0,

n+

that is,
Sev(i)n=n
This is (8) in [2]. O -

By (6), we can obtain many new identities. The interested reader can refer to the related
documents.

Theorem 5: We have

B,=3 (Z( ) kp,,-,) ™

k=0 \i=0
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Proof: The proofis similar to that of Theorem 1. O
Theorem 6: We have

b,=> 8, .8, (8)

where €, ;, can be obtained by using one of the following Lagrange inversion formulas (see [1],

148-52):
fe = (i e £2] ©

n—k

= __nl (2n-k) (-1 Nk ponj/onksj »
T QP e ey e T A D

Proof: From B(x) =b(f(x)), we have b(x) = B(f(x)), where F(f(x))=f(f(x))=x. So
b, = " BT = 3 8B,
k=0

where
o ,
8, =L e ey
=D e SOV _ (11 oot [ LY
NCEDke k]( ) (k—l)“‘ k>( x )
or

= TG = k(M SR (1 e oy

#+J

L (2n-k &4 1)/ e gk
= (;C’im( nn )Zl ni,j)((n )k+ ,}|( )fl T (f ()Y

Theorenm 7: As in Theorem 3, we have the following inverse relation,

ﬁv = Z(Z(}?}@z, kprz—i]bk>

k=0\i=0
a0

lbﬂ = zén,kBk’
k=0

where €, , can be obtained by using (9) or (10).

Example 4: Let (g(x), f(x))={1,log ). Then
] (Og = 1., 1Y
= (7Yt 1 H(x )(Eog-;l_—x) =5(n, k).

By (7), we have

Bn = Zsl(ﬁs k)bk
k=0
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By (10), we have
_ _on (an-k\& (-1 (n—k) ,,_k+,-( 1)1'
e””‘~(k—1)!( n );(n+j)(n-k+j)! j )T lesg

ool (- (-1 n
_(k—l)!( n )Z(n+j)(n—k+j)!( '

J=1

. |
=
A
S
=
S
|
&
+
™~
S
N

By (8), we have

_g_m (=R VG =R\ o
b"_k=o("‘1>’( " )E(nw)(n-m)!( J )sl(” k+j, B,

Therefore, we obtain the following inverse relation:

B, =Y s(n k)b,
k=0

O

el (m-R\E VS (k)
b"_fé("-m( 4 )E(n+j)(n—k+j)!( J )SI(” k+j, DB,
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