SEQUENCES RELATED TO RIORDAN ARRAYS

Xiqiang Zhao

College of Aerospace Engineering, Nanjing University of Aeronautics & Astronautics Nanjing 210016, People's Republic of China, Dept. of Math., Shandong Institute of Technology, Zibo Shandong 255012, China

Shuangshuang Ding

Dept. of Math., Shandong Institute of Technology, Zibo Shandong 255012, China (Submitted April 2000-Final Revision January 2001)

1. INTRODUCTION

The concept of a Riordan array was defined in [4] as follows: Let $\mathcal{F} = \mathbb{R}[x]$ be a ring of formal power series with real coefficients in some indeterminate x. Let $g(x) \in \mathcal{F}$ and let $f(x) = \sum_{k=0}^{\infty} f_k x^k \in \mathcal{F}$ with $f_0 = 0$ (in this paper we assume $f_1 \neq 0$). Let $d_0(x) = g(x)$, $d_k = g(x)(f(x))^k$, and $d_{n,k} = [x^n]d_k(x)$, where $[x^n]d_k(x)$ means the coefficients of x^n in the expansion of $d_k(x)$ in x. Then an infinite lower triangular array, $D = \{d_{n,k} | k, n \in \mathbb{N}, k \leq n\}$, is obtained. We also write D = (g(x), f(x)) and call D a Riordan array. In this paper we obtain some new relations between two sequences and some new inverse relations by using Riordan arrays. Some results are a generalization of [2] and [3].

2. SEQUENCES RELATED TO RIORDAN ARRAYS

Let
$$a(x) = \sum_{k=0}^{\infty} a_k x^k \in \mathcal{F}$$
 and $D = (g(x), f(x))$. Let

$$h(x) = \frac{1}{g(x)} = \sum_{k=0}^{\infty} h_k x^k \in \mathcal{F},$$
$$A(x) = a(f(x)) = \sum_{k=0}^{\infty} A_k x^k \in \mathcal{F}$$

and

$$s(x) = g(x)A(x) = \sum_{k=0}^{\infty} s_k x^k \in \mathcal{F}$$

Theorem 1: We have

$$A_{n} = \sum_{k=0}^{\infty} \left(\sum_{i=0}^{n} d_{i,k} h_{n-i} \right) a_{k}.$$
 (1)

Proof: By Theorem 1.1 in [5], we have

$$\sum_{k=0}^{\infty} d_{n,k} a_k = [x^n]g(x)a(f(x)) = s_n$$

From s(x) = g(x)A(x), A(x) = s(x)h(x), we have

$$A_{n} = \sum_{i=0}^{n} s_{i} h_{n-i} = \sum_{i=0}^{n} \left(\sum_{k=0}^{\infty} d_{i,k} a_{k} \right) h_{n-i} = \sum_{k=0}^{\infty} \left(\sum_{i=0}^{n} d_{i,k} h_{n-i} \right) a_{k} \dots$$

This completes the proof. \Box

2002]

Theorem 2: We have

$$a_n = \sum_{k=0}^{\infty} \overline{d}_{n,k} A_k, \tag{2}$$

where $\overline{d}_{n,k}$ can be obtained by using one of the following Lagrange inversion formulas (see [1], pp. 148-52):

$$\overline{d}_{n,k} = \frac{k}{n} [x^{n-k}] \left(\frac{f(x)}{x}\right)^{-n};$$
(3)

$$\bar{d}_{n,k} = k \binom{2n-k}{n} \sum_{j=1}^{n-k} \frac{(-1)^j}{n+j} \binom{n-k}{j} f_1^{-n-j} [x^{n-k+j}] (f(x))^j.$$
(4)

Proof: By A(x) = a(f(x)), we have $a(x) = A(\bar{f}(x))$, where $\bar{f}(f(x)) = f(\bar{f}(x)) = x$ and $\bar{f}(0) = 0$. By [1] and Theorem 1.1 in [5], we obtain $a_n = \sum_{k=0}^{\infty} \bar{d}_{n,k} A_k$, in which

$$\overline{d}_{n,k} = [x^n](\overline{f}(x))^k = \frac{k}{n} [x^{n-k}] \left(\frac{f(x)}{x}\right)^{-n}$$

or

$$\overline{d}_{n,k} = [x^n](\overline{f}(x))^k = k \binom{2n-k}{n} \sum_{j=1}^{n-k} \frac{(-1)^j}{n+j} \binom{n-k}{j} f_1^{-n-j} [x^{n-k+j}](f(x))^j.$$

This completes the proof. \Box

We can combine Theorems 1 and 2 to obtain a generator of an inverse relation.

Theorem 3: We have the following inverse relation,

$$\begin{cases}
A_n = \sum_{k=0}^{\infty} \left(\sum_{i=0}^n d_{i,k} h_{n-i} \right) a_k, \\
a_n = \sum_{k=0}^{\infty} \overline{d}_{n,k} A_k,
\end{cases}$$
(5)

where $\overline{d}_{n,k}$ can be obtained by using (3) or (4).

In addition, we obtain many new identities by using (1) or (2). The interested reader can consult [2] and [3].

Example 1: Let $g(x) = \frac{1}{1-ax}$ and $f(x) = \frac{b^{l}x^{l}}{(1-ax)^{s}}$. Then h(x) = 1-ax and

$$d_{n,k} = [x^n] \frac{1}{1-ax} \left(\frac{b^l x^l}{(1-ax)^s} \right)^k = b^{kl} a^{n-lk} \left(\frac{n+(s-l)k}{sk} \right)^k$$

By (1), we have

$$A_{n} = \sum_{k=0}^{\infty} \left(\sum_{i=0}^{n} b^{kl} a^{i-lk} \binom{i+(s-l)k}{sk} h_{n-i} \right) a_{k}$$

=
$$\sum_{k=0}^{\infty} \left(b^{kl} a^{n-lk} \binom{n+(s-l)k}{sk} - b^{kl} a^{n-lk} \binom{n+(s-l)k-1}{sk} \right) a_{k} = \sum_{k=0}^{\infty} b^{kl} a^{n-kl} \binom{n+(s-l)k-1}{sk-1} a_{k}.$$

JUNE-JULY

By (2) and (3), we have

$$\overline{d}_{n,k} = \frac{k}{n} [x^{n-k}] \left(\frac{b^l x^l}{x(1-ax)^s} \right)^{-n} = (-1)^{nl-k} a^{nl-k} b^{-nl} \frac{k}{n} {sn \choose nl-k},$$
$$a_n = \sum_{k=0}^{\infty} (-a)^{nl-k} b^{-nl} \frac{k}{n} {sn \choose nl-k} A_k.$$

So we obtain the following inverse relation:

$$\begin{cases} A_n = \sum_{k=0}^{\infty} b^{kl} a^{n-kl} \binom{n+(s-l)k-1}{sk-1} a_k \\ a_n = \sum_{k=0}^{\infty} (-a)^{nl-k} b^{-nl} \frac{k}{n} \binom{sn}{nl-k} A_k. \end{cases}$$

Letting s = l = 1, a = t, and b = s, we can obtain Theorems 3 and 4 in [3]. **Example 2:** Let $D_1 = (1, \log(1-x)) = (d_{n,k}^1)$ and $D_2 = (1, (1-e^x)) = (d_{n,k}^2)$. Then

$$d_{n,k}^{1} = [x^{n}](\log(1-x))^{k} = (-1)^{k}[x^{n}]\left(\log\left(\frac{1}{1-x}\right)\right)^{k} = (-1)^{k}\frac{k!}{n!}s_{1}(n,k)$$

and

$$d_{n,k}^{2} = [x^{n}](1 - e^{x})^{k} = (-1)^{k} [x^{n}](e^{x} - 1)^{k} = (-1)^{k} \frac{k!}{n!} s_{2}(n, k).$$

From $A(x) = a(\log(1-x))$, we find $a(x) = A(1-e^x)$. So by (1) we have

$$\begin{cases} A_n = \sum_{k=0}^{\infty} (-1)^k \frac{k!}{n!} s_1(n,k) a_k, \\ a_n = \sum_{k=0}^{\infty} (-1)^k \frac{k!}{n!} s_2(n,k) A_k, \end{cases}$$

where $s_1(n, k)$ and $s_2(n, k)$ are the Stirling numbers of both kinds and have the following generating functions (see [5]), respectively:

$$\left(\log\frac{1}{1-x}\right)^m = \sum_{n=0}^{\infty} \frac{m!}{n!} s_1(n,m) x^n; \quad (e^x - 1)^m = \sum_{n=0}^{\infty} \frac{m!}{n!} s_2(n,m) x^n. \quad \Box$$

3. SEQUENCES RELATED TO EXPONENTIAL RIORDAN ARRAYS

Let

$$f(x) = \sum_{k=0}^{\infty} f_k \frac{x^k}{k!}.$$

We introduce a new notation, $\langle x^k \rangle f(x) = f_k$, and assume $f_0 = 0$, $f_1 \neq 0$. Let

$$g(x) = \sum_{k=0}^{\infty} g_k \frac{x^k}{k!}, \ g_0 \neq 0$$

For an infinite lower triangular array $E = \{e_{n,k} | n, k \in \mathbb{N}, k \le n\}$, if

2002]

$$\mathbf{e}_{n,k} = \langle x^n \rangle g(x) \frac{(f(x))^k}{k!} \quad (k \ge 0),$$

for fixed k, then we write $E = \langle g(x), f(x) \rangle$ and say that $\langle g(x), f(x) \rangle$ is an exponential Riordan array.

Let

$$b(x) = \sum_{k=0}^{\infty} b_k \, \frac{x^k}{k!}$$

and let $E = \langle g(x), f(x) \rangle$ be an exponential Riordan array. Let

$$p(x) = \frac{1}{g(x)} = \sum_{k=0}^{\infty} p_k \frac{x^k}{k!}, \quad B(x) = b(f(x)) = \sum_{k=0}^{\infty} B_k \frac{x^k}{k!},$$

and

$$q(x) = g(x)B(x) = \sum_{k=0}^{\infty} q_k \frac{x^k}{k!}$$

For the exponential Riordan arrays, we have the following theorem as Theorem 1.1 in [5].

Theorem 4: We have

$$\sum_{k=0}^{\infty} \mathbf{e}_{n,k} b_k = \langle x^n \rangle g(x) b(f(x)).$$
(6)

Proof:

$$\sum_{k=0}^{\infty} e_{n,k} b_k = \sum_{k=0}^{\infty} \langle x^n \rangle g(x) \frac{(f(x))^k}{k!} b_k = \langle x^n \rangle g(x) b(f(x)). \quad \Box$$

Example 3: Let $E = \langle e^x, -x \rangle$ be an exponential Riordan array. Then

$$\mathbf{e}_{n,k} = \langle x^n \rangle \mathbf{e}^x \frac{(-x)^k}{k!} = (-1)^k \binom{n}{k}.$$

For

$$b(x) = \frac{\mathrm{e}^{ax} - \mathrm{e}^{bx}}{a - b} = \sum_{n=0}^{\infty} F_n \frac{x^n}{n!},$$

where $a, b = (1 \pm \sqrt{5})/2$ and F_n is the nth Fibonacci number defined by $F_{n+1} = F_n + F_{n-1}$, $F_0 = 0$, $F_1 = 1$ (see [2]), by (6) we have

$$\sum_{k=0}^{\infty} (-1)^k \binom{n}{k} F_k = \langle x^n \rangle e^x b(-x) = \langle x^n \rangle e^x \frac{e^{-ax} - e^{-bx}}{a-b} = \langle x^n \rangle - b(x) = -F_n$$

that is,

$$\sum_{k=0}^{\infty} (-1)^{k+1} \binom{n}{k} F_k = F_n.$$

This is (8) in [2]. □

By (6), we can obtain many new identities. The interested reader can refer to the related documents.

Theorem 5: We have

 $B_{n} = \sum_{k=0}^{\infty} \left(\sum_{i=0}^{n} \binom{n}{i} e_{i,k} p_{n-i} \right) b_{k}.$ (7)

JUNE-JULY

Proof: The proof is similar to that of Theorem 1. \Box

Theorem 6: We have

$$b_n = \sum_{k=0}^{\infty} \overline{e}_{n,k} B_k, \tag{8}$$

where $\overline{e}_{n,k}$ can be obtained by using one of the following Lagrange inversion formulas (see [1], 148-52):

$$\overline{\mathbf{e}}_{n,k} = \binom{n-1}{k-1} \langle x^{n-k} \rangle \left(\frac{f(x)}{x} \right)^{-n}.$$
(9)

$$\overline{\mathbf{e}}_{n,k} = \frac{n!}{(k-1)!} \binom{2n-k}{n} \sum_{j=1}^{n-k} \frac{(-1)^j}{(n+j)(n-k+j)!} \binom{n-k}{j} f_1^{-n-j} \langle x^{n-k+j} \rangle (f(x))^j.$$
(10)

Proof: From B(x) = b(f(x)), we have $b(x) = B(\bar{f}(x))$, where $\bar{f}(f(x)) = f(\bar{f}(x)) = x$. So

$$b_n = \langle x^n \rangle B(\bar{f}(x)) = \sum_{k=0}^{\infty} \overline{e}_{n,k} B_k,$$

where

$$\overline{e}_{n,k} = \langle x^n \rangle \frac{(\overline{f}(x))^k}{k!} = [x^n] \frac{n!}{k!} (\overline{f}(x))^k$$
$$= \frac{(n-1)!}{(k-1)!} [x^{n-k}] \left(\frac{f(x)}{x}\right)^{-n} = \binom{n-1}{k-1} \langle x^{n-k} \rangle \left(\frac{f(x)}{x}\right)^{-n}$$

or

$$\overline{e}_{n,k} = [x^n] \frac{n!}{k!} (\overline{f}(x))^k = \frac{n!}{k!} k \binom{2n-k}{n} \sum_{j=1}^{n-k} \frac{(-1)^j}{n+j} \binom{n-k}{j} f_1^{-n-j} [x^{n-k+j}] (f(x))^j$$
$$= \frac{n!}{(k-1)!} \binom{2n-k}{n} \sum_{j=1}^{n-k} \frac{(-1)^j}{(n+j)(n-k+j)!} \binom{n-k}{j} f_1^{-n-j} \langle x^{n-k+j} \rangle (f(x))^j. \quad \Box$$

Theorem 7: As in Theorem 3, we have the following inverse relation,

$$\begin{cases} B_n = \sum_{k=0}^{\infty} \left(\sum_{i=0}^n \binom{n}{i} \mathbf{e}_{i,k} p_{n-i} \right) b_k, \\ b_n = \sum_{k=0}^{\infty} \overline{\mathbf{e}}_{n,k} B_k, \end{cases}$$

where $\overline{e}_{n,k}$ can be obtained by using (9) or (10).

Example 4: Let $\langle g(x), f(x) \rangle = \langle 1, \log \frac{1}{1-x} \rangle$. Then

$$\mathbf{e}_{n,k} = \langle x^n \rangle \frac{\left(\log \frac{1}{1-x}\right)^k}{k!} = \frac{1}{k!} \langle x^n \rangle \left(\log \frac{1}{1-x}\right)^k = s_1(n,k).$$

By (7), we have

$$B_n = \sum_{k=0}^{\infty} s_1(n, k) b_k.$$

2002]

By (10), we have

$$\overline{\mathbf{e}}_{n,k} = \frac{n!}{(k-1)!} \binom{2n-k}{n} \sum_{j=1}^{n-k} \frac{(-1)^j}{(n+j)(n-k+j)!} \binom{n-k}{j} \langle x^{n-k+j} \rangle \left(\log \frac{1}{1-x} \right)^j$$
$$= \frac{n!}{(k-1)!} \binom{2n-k}{n} \sum_{j=1}^{n-k} \frac{(-1)^j}{(n+j)(n-k+j)!} \binom{n-k}{j} j! s_1(n-k+j,j).$$

By (8), we have

r

$$b_n = \sum_{k=0}^n \frac{n!}{(k-1)!} \binom{2n-k}{n} \sum_{j=1}^{n-k} \frac{(-1)^j j!}{(n+j)(n-k+j)!} \binom{n-k}{j} s_1(n-k+j,j) B_k.$$

Therefore, we obtain the following inverse relation:

$$\begin{cases} B_n = \sum_{k=0}^{\infty} s_1(n,k) b_k, \\ b_n = \sum_{k=0}^n \frac{n!}{(k-1)!} \binom{2n-k}{n} \sum_{j=1}^{n-k} \frac{(-1)^j j!}{(n+j)(n-k+j)!} \binom{n-k}{j} s_1(n-k+j,j) B_k. \end{cases}$$

ACKNOWLEDGMENT

The authors wish to thank the referee for many useful suggestions that led to an improvement in the presentation of this paper.

REFERENCES

- 1. L. Comtet. Advanced Combinatorics. Dordrecht: Reidel, 1972.
- 2. H. W. Gould. "Series Transformations for Finding Recurrences for Sequences." *The Fibo*nacci Quarterly 28.2 (1990):166-71.
- 3. P. Haukkanen. "Formal Power Series for Binomial Sums of Sequences of Numbers." *The Fibonacci Quarterly* **31.1** (1993):28-31.
- 4. L. V. Shapiro, S. Getu, W. J. Woan, & L. Woodson. "The Riordan Group." Discrete Appl. Math. 34 (1991):229-39.
- 5. R. Sprugnoli. "Riordan Arrays and Combinatorial Sums." Discrete Math 132 (1994):267-90.

AMS Classification Numbers: 11A25, 11B39, 11B65
