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1. INTRODUCTION 

The concept of a Riordan array was defined in [4] as follows: Let Sf = R[x] be a ring of 
formal power series with real coefficients in some indeterminate x. Let g(x) e 9 and let f(x) = 
EjtLo fkjk G & w^th f0 = 0 (in this paper we assume fx & 0). Let dQ(x) = g(x)9 dk - g(x)(f(x))k, 
and d^k = [xn]dk(x)9 where [xn]dk(x) means the coefficients of x^ in the expansion of dk(x) in 
x. Then an infinite lower triangular array, D = {dn^k \k,n eE,k <n}, is obtained. We also write 
D = (g(x% f(x)) and call D a Riordan array. In this paper we obtain some new relations between 
two sequences and some new inverse relations by using Riordan arrays. Some results are a gen-
eralization of [2] and [3]. 

2. SEQUENCES MELATEB TO MOMDAN ARRAYS 

Let a(x) = Xr=o%^ e ^ and D = (g(x\ / (*)) . Let 

8\x) *=0 

A(x) = a(f(x)) = flAkxke9, 
k^Q 

and 

Theorem 1: We have 

s{x) = g(x)A(x) = ^skxk e 9. 
k=Q 

k=0 \ i = 0 

Proof: By Theorem 1.1 in [5], we have 

A = I Z4,A-ik 0) 

Z<^k=l^MxHf(x)) = Sn 
k^0 

From s(x) = ̂ (x)^(x), A(x) = s(x)h(x), we have 
n n f oo \ m f n \ 

This completes the proof D 
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Theorem!: We have 

(2) 

where dnk can be obtained by using one of the following Lagrange inversion formulas (see [1], 
pp. 148-52): 

*rW/(*)Y". 
* n \ x 

*n,k 
_,2n-kX^(-\yn-k >-*y^(-iy 

n j£- n + j 
:K )ff-J[x"-k+J](f(x)y-

(3) 

(4) 

Proof: By A(x) = a(f(x)), we have a(x) = A(f(x)), where f(f(x)) = / ( / ( * ) ) = x and 
/(O) = 0. By [1] and Theorem 1.1 in [5], we obtain an - T^=0d^kAk, in which 

dr.,k=[x"](f(x)f=hx"-k]{^-
n \ x 

or 

This completes the proof. D 

We can combine Theorems 1 and 2 to obtain a generator of an inverse relation. 

Theorem 3: We have the following inverse relation, 

4 = Z X4,A-i 
it=o V/=o 
00 

fc=0 

a k> 
(5) 

where dntk can be obtained by using (3) or (4). 

In addition, we obtain many new identities by using (1) or (2). The interested reader can 
consult [2] and [3]. 

Example 1: Let g(x) = -^- and f(x) = /* ' . Then h(x) = l-ax and 

dn = [xl i_f^L_Y = Per*(nHs-i)k 
"•* L n-axyil-axy) V 5* 

By (1), we have 
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By (2) and (3), we have 

kr.M-htl bl% (-1)""-""*-' Ujlty 

So we obtain the following inverse relation: 

Letting s = l = l,a = t, and b = s, we can obtain Theorems 3 and 4 in [3]. • 

Example 2: Let Dx = (1? log(l-x)) - (dl
n%k) and D2 = (1? (1 -ex)) = « k ) . Then 

< * = M 0 o g ( l - x))k = (-1) V ] ( l o g ^ ) j = (-If ^Sl(n, k) 

and 

<k =[«"](!-e*)* =(-l) iM(eJ C-l)A r = ( - l ) * ^ ( M ) . 

From /4 (x) = a(log(l - x)), we find a(x) = .4 (1 - e*). So by (1) we have 

«» = X(-i)*W".*)4, 
where ^(w, it) and ^(w, £) are the Stirling numbers of both kinds and have the following generat-
ing functions (see [5]), respectively: 

log 
1 r=f^i(^)^ (cr-ir=S5f^»)*"- D 

n=0 "• n = 0 " -
1-X 

3. SEQUENCES RELATED TO EXPONENTIAL RIORDAN ARRAYS 

Let 

/w=Z/*fi 
it—0 

We introduce a new notation, (xk)f(x) = fk9 and assume f0 = 0, ft & 0. Let 

kv 
For an infinite lower triangular array E = {e^ ̂ K * e N ? A < TI}, if 
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%,k=(x")g(x)&&f-(k>0), 

for fixed k, then we write E = (g(x\f(x)) and say that (g(x\f(x)) Is an exponential Riordan 
array. 

Let 

k=Q ^ ! 

and let E = (g(x), f(x)) be an exponential Riordan array. Let 
00 Jk °° v& 

and 

m=wrlkPtT* **>=*<«*»=I*IT-

q(x) = g(x)B(x)=Ydqk~TV' 

For the exponential Riordan arrays, we have the following theorem as Theorem 1.1 In [5]. 

Theorem 4: We have 

I X A ==<*">£(*)£</(*)). (6) 

Proof: 

i e „ , A = i(x")g(x)^^bk = (x")g(x)b(f(x)). D 
k~Q k=0 Kl 

Example 3: Let E = (ex, - x) be an exponential Riordan array. Then 
\k 

en,k=(x")ext$- = (-Vk("k 

For 
ax __ J)x jo n 

where a, ft = (1 ± ̂ 5) / 2 and Fn Is the w* Fibonacci number defined by Fn+l = Fn + Fn_l9 F0 = 0, 
Fl = l (see [2]), by (6) we have 

£( -1 )* \£)Fk = (x»)e*b(-x) = <s")e*e
 a_b = <*">-*(») = "^> 

that is, 

it=o v / 
This is (8) in [2]. D 

By (6), we can obtain many new identities. The interested reader can refer to the related 
documents. 

Theorem 5: We have 

B„ = t{i{"\kPn-]bk- (7) 
k=o V/=o v J ) 

250 [JUNE-JULY 



SEQUENCES RELATED TO WORD AN ARRAYS 

Proof: The proof is similar to that of Theorem 1. • 
Theorem 6: We have 

CO 

K = 2 X A (8) 
where e}%k can be obtained by using one of the following Lagrange Inversion formulas (see [1], 
148-52): 

ft# From j?(x) = b(f{x)\ we have A(x) = B(f(x)), where / ( / ( * ) ) = f(f(x)) = x. So 

6/) = <x»)JB(/») = £ e M 4 , 
&=0 

where 

or 

^*=Mf}or>))t=f}*(%-*)2^(B}*)>ry[^>](/(^ 

(k-l)\{ n )fa(n+jXn-k + jy\ J )Jl { 'UK)) ' 

Theorem 7: As in Theorem 3, we have the following inverse relation, 

*„ = Xe«,A, 
Jfc=0 

where e„^ can be obtained by using (9) or (10). 

Example 4: Let (g(x\ f(x)) = (1, log ̂ ) . Then 

By (7), we have 

jfc=0 
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By (10), we have 

e - n\ (2n-kY^ (-1)' f " - * W * + / N f i o a
 l Y 

(*-l)l 

By (8), we have 
^(^fj^^t/W"-^ 

Therefore, we obtain the following inverse relation: 
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