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PROBLEMS PROPOSED IN THIS ISSUE 

H-585 Proposed by Herrmann Ernst? Siegbmrg? Germany 
Let (dn) denote a sequence of positive integers dn with dx > 3 and dn+x-dn > 1, n - 1,2,.... 
We introduce the following sets of sequences (dn): 

B= (rfj; A . < £ ^ - < ^ - f o r a l l ^ E # 
FdH k=n Fdk

 Fd-\ 

Show that: 
(a) there is a bijection / : ] 0,1] -> B, f(x) = (dn(x))™=l; 
(b) B is a subset of A with A\B & 0; 
(c) CisasubsetofJ5withJ?\C*0. 

H-586 Proposed by H.-J* Seiffert? Berlin? Germany 
Define the sequence of Fibonacci and Lucas polynomials by 

F0(x) = 0, Ft(x) = 15 Fw+1(x) = xFn(x) + F^x), neN, 
L0(x) = 2, Lx(x) = x, LnH(x) = xLn(x) + / ^ ( x ) , % e # , 

respectively. Show that, for all complex numbers x and all positive integers n, 

S I * J*^ 0 0 " 2*2-l 
and 

M * J x / * ( r ) - 2*2-l 
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H-587 Proposed by N. Gauthier &JR Gosselin, Royal Military College of Canada 
Let x and y be indeterminates and let 

a^a(x9y) = ^(x + ̂ x2+4y)9 ft = fi(x,y) = ±(x-J^Tty) 

be the distinct roots of the characteristic equation for the generalized Fibonacci sequence 
{#,(*, JOKX where 

#m.2<(*> y) = xHn+i(x> y)+yHn{x, y). 

If the initial conditions are taken as HQ(x9y) = 0, Hx(x9y) = 1, then the sequence gives the gen-
eralized Fibonacci polynomials {Fn(x9 y)}^. On the other hand, if H0(x9 y) = 2, H^x, y) = x, 
then the sequence gives the generalized Lucas polynomials {Ln(x9 y)}^ • 

Consider the following 2 x 2 matrices, 

and let n and m be nonnegative integers. [By definition, a matrix raised to the power zero is equal 
to the unit matrix /.] 

a. Express fn m(x,y) = [(A-B)~~l(An-Bn)]m in closed form, in terms of the Fibonacci 
polynomials. 

b. Express gn m(x9 y) = [An + Bn]m in closed form, in terms of the Lucas polynomials. 
c. Express hnm(x,y) = [C"+Dn]m in closed form, in terms of the Fibonacci and Lucas 

polynomials. 

H°588 Proposed by Jose Luiz Diaz-Barrero & Juan Jose Egozcue, Barcelona, Spain 
Let n be a positive integer. Prove that 

where Fn and Ln are, respectively, the w* Fibonacci and Lucas numbers. 

SOLUTIONS 
A Fractional Problem 

H-574 Proposed by J. JL Diaz-Barrero, Barcelona, Spain 
(Vol 39, no. 4, August 2001) 

Let n be a positive integer greater than or equal to 2. Determine 

(Fn-Ln)(Fn-Pn) (Ln-Fn)(Ln-Pn) {Pn-Fn)(Pn-Lny 

where Fn9 Ln9 and Pn are, respectively, the w* Fibonacci, Lucas, and Pell numbers. 

Solution by Paul S. Bruckman, Berkeley, CA 
We employ certain well-known results from finite difference theory. For any well-defined, 

complex-valued function f(x) with complex domain D, and for any three distinct values 
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xt e D , i = 1,2,3, define the "second-border!l divided difference of/, valued at (x1?x2,x3), as 
follows: 

A2(/(x)) | (xh x2, x3) - ^ /C^ ) + 02f(x2) + ̂ 3/(x3)? (1) 

where 6 \ - l / f ^ - x ^ - x , ) } , $2 - i /{(x2-X l)(x2-x3)}, 03 = l/{(x3~x1)(x3-x2)}. 
For brevity, we may also denote the left member of (1) as A2(/(x)) when no confusion is 

likely to arise. I f / i s a polynomial, the second-order divided difference has the following prop-
erties: 

A2(/(x)) = 0 if degree(/) = 0 or 1; A2(/(x)) = 1 if degree(/) = 2. (2) 

Given distinct values xl,x29x3, let al = xx +x2 +x3, a2 = xlx2+x2x3+x3xl. Consider the fol-
lowing expression: 

U(xh xh x3) = CF2A2(1) + (1 - a{)tf(x) + A2(x2). (3) 

Using (1), this becomes 

I7(x1? x29x3) = a2(0t + 02 + 03) + (1 - o^Xx^j + x202 + x303) + (x%0x + x\02 + x303). 

After expansion (using the definitions of ax and CJ2), this simplifies to 

U(xl9 x1? x3) = (xj + x2x3)0l + (x2 + xlx3)02 + (xj + xlx2)03. (4) 

On the other hand, since A2(l) = A2(x) = 0 and A2(x2) = 1, we see from (3) that U(xl9 xl9 x3) = 1. 
This yields the following general identity, 

(Xj 4- X2X3)$j 4- (x2 4- XlX3)02 4- (x3 4- XlX2)03 = 1 (5) 

which is true for any distinct values xl9 x2, and x3. 
We now need to show that Pn9 Ln9 and Fn are distinct if n >2. Note that Px - Lx - Ft - 1; 

P2 = 2, L2 = 3, F2 = 1; P3 = 5,13 = 4, F3 = 2. Since Pn,2 = 2Pn+l 4- Pn9 Ln+2 = Ln+l + Ln9 and Fn+2 = 
Fn+l+Fn9 it follows by an easy inductive proof that, if w > 3, Pn> Ln>Fn9 while L2> P2> F2. 
Therefore, if n > 2, we may let xx = Fn9 x2~ Ln9 x3 = Pn in (5), proving that the given expression 
simplifies to 1. 
Also solved by G. Arora, D* Iahnucci, H.-J. Seiffert, R & G* St arnica, and the proposer. 

A Remarkable Problem 

B-575 Proposed by N. Gautkier, Royal Military College of Canada 
(Vol 3% no. 4, August 2001) 

Problem Statement: "Four Remarkable Identities for the Fibonacci-Lucas Polynomialsff 

For n a nonnegative integer, the following Fibonacci-Lucas identities are known to hold: 

^2«+2 ~ "2w+l ~ ^2n 9 ^2fi+3 ~ ^2n+2 ~ fyn+V 

The corresponding identities for the Fibonacci {Fn(u)}™=0 and the Lucas {Ln(u)}™=0 polynomials, 
defined by 

F0(u) = 0, Fx(u) = 1? F^2(u) = uFnn{u) + F„(u), 
LQ(u) = 2, L^u) = 11, L^2(u) = uLn+l(u) + Ln(u), 

respectively, are: 
i 2 « + 2 W = ("* + 4 ) 4 f l ( « ) - L2niU)> F2n+l(U) = h n M = F2n+MY 0 ) 
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For m, n nonnegative integers, with the convention that a discrete sum with a negative upper limit 
is identically zero, prove the following generalizations of (1). 

Case a: (2n + 2)2mL2n+2(u) = (u2 + 4) 2m g^7J(2»+1>2; 

+u 
m-\ 2m 

Caseb: (2n + 3ymF2n+3(u) = (2m 

Case c: (2« + 2)2m+1F2n+2(w) = u 

Case d: (2/i + 3)2m+1 L2n+3 (w) = u 

IK7(2»+2>2' 

1=0 V / 

_ /=o v ' 

±(2m
2fl)(2n + 2?> 

^2«+l(M) 

A„+1W-[(2«)2'"]X2„(«). 

F2n+2(u)-[(2n + lf"]F2n+l(u). 

F2n+i(u) 

^ n + i (")- [ (2») 2 B , + 1 ]^(«)-

L2n+l(U) 

+ (M2+4) 
(=0 

2m+l 

2w + l as;>*« \2l+l ^2„+2(") 

-[(2»+i)2m+1]i:2„+1(«). 

Solution by the proposer 
Start from the identity 

xn+2 4- x~(n+2) = (x + x-!)(xw+1 + x"(n+1)) - (xw + x"w), 

which is valid for any variable x and number n. Next, introduce the differential operator D = x ~ 
and note that Dmxx = Xnxx for m a nonnegative integer and X an arbitrary number. Acting on the 
identity with Dm then gives 

(if + 2)m(xn+2 + (-l)m x-<n+2) = Dm[(x + x-!)(xw+1 + x"(w+1))] - fiw(xn + (-l)mx~n). (*) 

Now le t /and g be two arbitrary differentiate functions of x and note that 

D(fg) = (Df)g+f(Dg); D\fg) = (D2f)g+2(DfXDg) + f(D2g); 
D}(fg)-(D3f)g + 3(D2f)(Dg) + 3(Df)(iy2g)+nD3gy,etc.... 

The general term is 

Dm(fg)=th)(Dn"lf)(Dlgi 
as can easily be established by induction on m, so we skip the details. 

Insertion of (**) in (*) with / = (x-f x"1) and g = (xn+l + x~(w+1^) gives 

(*#) 
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(n + 2)m(xn+2 + (-lfjT(w+2>) 

= X (Y)(*+(~dm~l^l)(n+iy(^+1+(-iyx-<w+i>) - «%r*+(-ir x-*> (**#) 
1=0 \ J 

It is well known that the Fibonacci and Lucas polynomials can be represented in Binet form 
as follows: 

w-^E^^w-^w^o; 
a(u) = j(u + V M 2 + 4 ) ; fi(u) = y (w - Ju1+4). 

We now set x = a(u) = a in (***) and invoke the property a - 1 = -/? to get 

(/i + 2)w(a,rt-2 + ( - l f+ w + 2^+ 2) 

= X frlte + (-l)m+l+lM^ +1)'(a^1 + (-l)m+/+1/T+1) -n m (a n + ( -1 )^ /T) . 

Next, separate the sum over all / in the right-hand member of the above into a sum over even 
values (21) and one over odd values (2/+1) and make the following substitutions to obtain the 
four cases given in the problem statement. 

Case a: m^>2m;n-:>2m; Case c: m->2m + l; n—>2n; 
Case b: m->2m; n->2n + l; Case d: m->2m + l; n->2n + l. 

The algebra is straightforward and we skip the details. This completes the solution. 
Also solved by P. S. Bruckman andH.-J. Seiffert 

General IZB 

H-576 Proposed by Paul S. Bruckman, Berkeley, CA 
(Vol 3% mo. 4, August 2001) 

Define the following constant, C2 = flp>2{l-l/(p-~l)2}, as an infinite product over all odd 
primes/?. 
(A) Show that C2 = Z*=i/i(2w~l)/{^(2w--l)}2

3 where fi(n) and $(n) are the Mobius and Euler 
functions, respectively. 
(B) Let Tdln ju(n/d)2d. Show that C2 = YOi{C(p)TR{n)ln

9 where £(/i) - E^ i k~n is the Rie-
mann Zeta ftinction (with n> 1) and £*(n) = T^^k-l)~n = (1 -2"WK(«). 
Note: C2 is the "twin-primes" constant that enters into Hardy and Littlewoodss "extended" con-
jectures regarding the distribution of twin primes and Goldbach's Conjecture. 
Solution by the proposer 

Solution to fart (A): C2 is easily shown to be a well-defined constant in (0,1). We may 
express the product defining C2 as a Euler product: 

c2=no-i/G>-i)2}=np+rtp)/WP)>2] 
p>2 p>2 

p>2 
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= I M»)/woo}2=Etf2«-i)/{tf2/i-i)}2. 
n-l, n odd n=l 

Solution to Part (B): From the expression for C2, 

- l ogQ = X{21og(l-Jp-1)-log(l-2Jp-1)} 
p>2 

= £ %(2"-2)p-"/n = y£(2"-2)g*(n)/n. 
n=\ p>2 n=2 

Taking the logarithm of the Euler product for the "modified" Zeta function, we obtain 

logr(') = -Ilog(i-/r') 
p>2 

valid for all s with Re (5) > 1. Then 

m=l p>2 m=\ 

By a variant form of Mobius inversion, we obtain 
00 

g*(s)=S ^(w) lo§ ̂ o^) /*». (*) 
Then 

"togC, = X ( 2 " - 2 ) / ^ X / i ( m ) l o g a ^ ) / ^ 
n-2 m=l 

= JtC(N)/Ny£M(N/d)(2d-2)= £loga^)i?(AT)/# 
N=2 d\N N=2 

since 
YfKN/d) = 0 (fbrtf>l). 

Now, taking the antilogarithm leads to the expression given in (B). 
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