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1. INTRODUCTION 

There are several ways of defining the real number e. The most common of them is to define 
e as the limit of the nondecreasing sequence 

Related to this definition is the following problem proposed in 1990 at the Romanian County 
Olympiad: "Study the convergence of the sequence {xn}n>l defined by 

1 \n+Xn 

1 + - = e." HI 
The problem is not hard to solve, but, surprisingly, a different approach to solving it than the one 
given originally by the proposers yields some interesting applications. The solution given by the 
proposers used FHopital's rule. For this, we write 

1 
Xn ~ f 1 \ W' 

H1+s) 
and then obtain 

r " " " V ' X) 1 
2 

If one were to solve the problem in a different way, then a natural question related to con-
vergence would be whether the sequence is bounded or not. The answer to this is given by the 
double inequality 

which proves that the sequence is bounded and xn e (0,1). In view of this, one might ask if (1) 
can be refined to a similar pair of inequalities that incorporate 0.5 in the exponents. In other 
words, is sit true that, for a given 8 > 0 and n sufficiently large, the following inequalities hold: 

Hr<«H) 
In order to answer this question, we will generalize (1) and show how the generalized 

a-inequality can be applied to various problems, namely: find a shorter proof of Stirling's formula 

2002] 295 



AN OLYMPIAD PROBLEM, EULER'S SEQUENCE, AND STIRLING'S FORMULA 

than the one given by D. S. Mitrinovic (see [3], pp. 181-84), solve the Olympiad problem men-
tioned before, and study the convergence of a general Euler-type series. 

2. THE a-INEQUALITY 
We prove the following 

Proposition: 
(a) If 0 < a < 0.5, then there exists an x(a) > 0 such that 

\x+a 

(b) If a > 0.5, then 

< e, x> x(a); 

>e, x>0. 

Proof: For a > 0, let fa : (0, oo) -» (0, oo), fa(x) = (l + ±)x+a. Logarithmic differentiation of 
this function yields 

r^-HTH^ym i). 
If we consider now the mapping ga : (0, oo) -> R, ga(x).= ln(l + 7) - x ? ^ , then 

& W ~ x2(x + l)2 •• 
We notice a couple of cases: 

(i) If a e [0,0.5), then g£(x) <0 for all x>x(a) = a/(l~-2d). Thus,g-a is nonincreasing 
on (x(a), 00) and ga(x) > limx_¥O0ga(x) = 0 for all x > x(a). This implies that /£(*) > 0 for all 
x > x(a). Hence, fa is strictly increasing on (x(a), 00). Finally, using the fact that l im^^ fa(x) 
= e, we infer that fa(x) < e for all x > x(a). 

(ii) If a G [0.5,00), then g'a(x) > 0 for all x > 0. From this point, an argument similar to the 
one used before leads to the conclusion that fa(x) > e for all x > 0. 

Before we continue with our applications, let us note that the case a = 0.5 is treated, among 
other inequalities involving exponentials, in [3, §3.6]. 

3. APPLICATIONS 

A. If we let s e (0,0.5) and a = 0.5-8 in (a), we see that xn>±-s for all n>[(l-2s]/4s] + l. 
By (b), it is true that xn < \ + s for any n > 1; hence, 

1 
n 2 

< s, n> n(s) = 1-28 
48 + 1, 

which proves that the sequence converges, indeed, to 0.5. 
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B* It Is well known that Euler's sequence 

2 n — \ 
Is nonclecreasing and converges to Euler's constant, C = .57721566.... We show below that this 
fact Is just a complex consequence of the a-inequallty with a = 0, 1 in the previous section. More 
generally, we use our proposition to study the convergence of the family of sequences: 

1 1 1 
Y (a) = ——+—— + •••+ ln«, n>2,a>0. 
/nX J \+a 2+a n-l+a 

We will prove that (y„(a)) is convergent for any a > 0. Since 

if a< 0.5, then y n+l(a) - y n(a) > 0 f o r a11 n ^ n(a) = [l=^l + 2> a n d i f a ^ °-5> t h e n Tn+i(a)-
yn{a) < 0 for all n > 2. If we could prove that our sequence Is also bounded, then convergence 
would follow automatically. Let us consider first the case when a e [0,0.5). Since a +1 > 1, we 
can write yk+l(a +1) - yk(a +1) < 0, k > 2. But 

yk{a + l) = y^a) + ln{\ + ^ - ^ -
r + 1 

Implies that 
ln(l+j^-\n^+1^yrk+2(a)-rk+1(a),k>2. 

Now, If we let k = 2 ,3, . . . ,«- 2 and add these inequalities, we find that 

y„(a)<ln| + r3(a)- lnfl + - M < ——+ ̂  ln2> n^4> 
fn\ J 2 / 3 W V n-lj 1 + a 2 + a 

which proves that our sequence Is bounded and, hence, convergent. Denote Its limit by y(a). 
Note that y(a) e [m(a), M(a)], where m(a) = rmn{y2(a\..., f„(a)(a)} and 

M(a) = max|x2(a) ,r3(^XY^ + ^ ^ - l n 2 } -

For a = 0, p(0) = C and n(G) = 2; hence, C e [1 - In 2,1.5 - In 2]. Suppose now that a = 0.5. An 
easy computation gives 

r „ ( £ ) = r 2 „ - r „ + 2 b 2 - 2 ^ C + 2 ln2-2 . 

When a e (0.5,1], we have 

which implies y„(a) ->y(a) e [C - 1 , - ^ - In 2]. Finally, if a e (1, QO) , then 
i i i i i 

r"~r"^ = a[T+^ + 2(2+a) + '" + (n-\)(n-l+a)) 
, 1 , 1 1 , , 1 H a a 

<a\— + — ---\ h-,2 2 3 n-\ n) 4 n' 
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hence, r » - » r ( a ) E [ C - f ? 1 ^ - l n 2 ] . 

C. Stirling's formula asserts that 

It is well known that the result is closely related to the behavior of the gamma function, T(x) = 
lQe~*tx~ldt for large values of x. This classical way of deriving Stirling's formula can be found, 
for example, in [1, pp. 20-24]. For different approaches, see also [2] and [4]. We use our propo-
sition to give a proof which is different from the ones mentioned before. This proof uses an 
argument similar to, but shorter than, the one given by D. S. Mitrinovic. We will assume as 
known the following result due to Wallis: 

lim. M = £ 
»-»=°(2«-l)!!V2^TT V2' 

For a> 0, let u„(a) = - ^ , n>2. Then 

thus, (un(jj) is nonincreasing and bounded below by 1. Therefore, l im^^ un(~) = u exists and is 
strictly positive. Note also that 

u2n(\) {2n-\)\\S' 
If we let n -» oo? we obtain u - 42TV, which proves Stirling's formula. Note that in this formula 
the value a = 0.5 is the best one, for 

Too if a <0.5, 
JmH,(a) = (0 i f a > 0 - 5 -
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