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Northwest Missouri State University, 800 University Drive, Maryville, MO 64468. 
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Each problem and solution should be typed on separate sheets. Solutions to problems in this 
issue must be received by February 15, 2003. If a problem is not original, the proposer should 
inform the Problem Editor of the history of the problem. A problem should not be submitted 
elsewhere while it is under consideration for publication in this Journal. Solvers are asked to 
include references rather than quoting "well-known results". 

BASIC FORMULAS 

The Fibonacci numbers Fn and the Lucas numbers Ln satisfy 

Ai+2 ~ AH-1 + A?> M) - 2> Lx = 1. 

Also, a = (1 + ̂ 5) / 2, /? = ( l -V5)/2 , Fn = (an-pn)I\J5, and Ln = an+fin. 

PROBLEMS PROPOSED IN THIS ISSUE 

B-940 Proposed by Gabriel® Stanica & Pantelimon Stanica, Auburn Univ. Montgomery\ 
Montgomery, AL 

How many perfect squares are in the sequence 

k=0 

B-941 Proposed by Walther Janous, Innsbruck, Austria 
Show that 

B-942 Proposed by Stanley Rabinowitz, MathPro Press, Westford, MA 
(a) For n > 3, find the Fibonacci number closest to L„. 
(b) For n > 3, find the Fibonacci number closest to l}n. 

B-943 Proposed by Jose Luis Diaz & Juan J Egozcue, Vniversitat Politecnica de Catalunya, 
Terrassa, Spain 

Let n be a positive integer. Prove that 
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k=lFk Fn+2~l 

When does equality occur? 

B-944 Proposed by Paul S. Bruckman, Berkeley, CA 
For all odd primes p, prove that 

k=l 

where y represents the residue k l (mod/)). 

B-945 Proposed by K Gauthier, Royal Military College of Canada 
For n > 0, q > 0, s integers, show that 

^ / J^-l^+lXw-0+* = Fq+lF2r,+s' 
1=0 \ J 

SOLUTIONS 
Some Sum Divides Another 

6-925 Proposed by Jose Luis Diaz & Man /. Egozcue, Universitat Politecnica de Catalunya, 
Terrassa, Spain 
(Vol 3% no. 53 November 2001) 

Prove that X^=0 F*+l divides 

I#+1[Ffc+2+(-l)^]for«>0. 
k=Q 

Solution by H.-J. Seifferi, Berlin, Germany 
From (I3) of [1], we know that 

n 

2^Fk+l ~ Fn+iFn+2> 
k=0 

so it suffices to prove that, for all n > 03 

Sn := iFk\lFk+2 H-tfFk] = [^Z^F»+3 H-lfF^y^F^. (1) 

Direct computation shows that this is true for n = 0. Assuming that (1) holds for n-1, n > 1, we 
obtain 

Sn = Sn_1+F^x[Fn+2H-V'Fn\ 

= ( ^ ^ ^ a - (-l)"^i]^Wi + tfdF„+2 + (-1)"FJ 

= i 1 1 ^ - ^ + F n + l y „ + l F „ + 2 = i ^ t s L F n ^ + ( - i y F „ + 2 y„+lFn+2, 
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where the latter equality Is easily established by considering the cases in which n is even and n is 
odd. This completes the induction proof of (1). 

Reference 
1. V. E. Hoggatt, Jr. Fibonacci and Lucas Numbers. Santa Clara, CA: The Fibonacci Associa-

tion, 1979. 
Almost all solvers used essentially a similar method and provided the same reference. 
Also solved by Brian IX Beasley, Paul S« Bruckman, Charles Cook, Kenneth R Davenport, 
L* A. G Dresel, Russell J. Mendel, Walther Janous, and the proposers. 

Find the Limit 

B-926 Proposed by Ovidiu Furdui, Western Michigan University, Kalamazoo, Michigan 
(Vol 39, no. 5, November 2001) 

lfl<a<a, evaluate 
/ _L+J_+...+_L X + J L + . . . + _ i _ \ 

lim [aFl h p» -a* h Fn-l\. 

Solution by GurdialArora & Vlazko Kocic, New Orleans 
To find the above limit, we use the following result from [1]: 

lim|4- + i - + ---+4^ = 2 + a«3.6180339.... 
A F2 

Therefore, 
/ J_+_L+...+JL J_+_L+.. .+_J_\ 

lim [aPl h Fn -ah h Pn~l = 0. 

Reference 
1. Zdzislaw W. Trzaska. "On Factorial Fibonacci Numbers.1' The Math. Gazette (1998):82-85. 
Almost all solvers noted that 

exists and gave several references. In fact, the result is not difficult to prove. 

Also solved by Paul S* Bruckman, L. A. G Dresel, Russell J. Hendel, Walther Janous, H.-J. 
Seiffert, Nairn Tugler, and the proposer. 

A More General Identity 

B-927 Proposed by R S» Melham, University of Technology, Sydney, Australia 
(Vol 39, no. 5, November 2001) 

G. Candido [Sf A Relationship between the Fourth Powers of the Terms of the Fibonacci 
Series," ScriptaMathematica 113-4 (1951):230] gave the following fourth-power relation: 

2(F„4 + F„\1 + F„4
+2) = (F„2 +F„2

+1 +F„2
+2)2. 

Generalize this relation to the sequence defined for all integers n by 
w„=pw„-x-qwn_2, w^a,wx=b. 
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Solution by Harris Kwong, SUNY College at Fredonia, Fredonia, NY 
We find 2 ( ?

4 f C + / r f f f l < + 2 ) = ( ? X 2 + ̂ 1 < 2 ) 2
! because 

and we complete the proof by noting that 

<?2 W C i + C 2 ) = q2W?[(W„+2 -pWn+lf + 2pWn+lW„+2] 
= q4W:+2pq2W2Wn+lWn+2, 

p2Ki(q2w?+w?+2) = p2w?+Wn+2 +qK)2-2qw„w„+2] 
= p4W:+1-2p2qW„W?+1W„+2, 

W?+2(q2W?+P2W?+i) = WZ+2[(pWn+l-qWny+2pqWnWM] 
= W:+2+2pqWnW„+lW?+2, 

and 

2pq2W^W„+lWn+2-2p2qWX+lW„+2 +2pqWnW„+1W^+2 

= 2pqW„Wn+1Wn+2(qW„ - pWn+l + W„+2) = 0. 

Also solved by Brian D. Beasley9 Paul S. Bruckman$ L. A. G. Dresel9 Russell J. Hendelf 
Walther Janous, and ike proposer* 

A Complex Fibonacci Polynomial 

B-928 Proposed by H.-J. Seiffert9 Berlin^ Germany 
(Vol 3% no. 5, November 2001) 

The Fibonacci polynomials are defined by FQ(x) = 0, Fx(x) = 1, Fn+X{x) = xFn+l(x) + F„(x) for 
n > 0. Show that, for all complex numbers x and all nonnegative integers n, 

*w.w=tyr2 [̂l%fy+2r*. 
where [/J and fe] denote the floor- and ceiling-function, respectively. 

Solution by Paul S. Bruchman9 Berkeley>, C4 
We may restate Seiffert's putative identity as follows: 

where 

G*»i(x) = I(-l)Ktt,) /2,f, ,"[S/
+

2?/2V +2r*. (2) 
Our proof of (1) uses a modified form of induction. First, however, we derive the recurrence 

satisfied by the F2n+i(xys. Note that the basic recurrence satisfied by the i^(x)fs has the charac-
teristic equation, z 2 - x z - 1 = 0, which has the solutions M = M(X) = X + 0 and v = v(x) = x-0, 
where 0 = (x2 +4)1/2. Note that u + v = x and tiv = - 1 . Therefore, the characteristic equation of 
the F2n+l(xy& is as follows: (z-u2)(z-v2) = 0, i.e., z2 - (x 2 + 2)z +1 = 0. In other words, the 
F2w+1(x)f s satisfy the following recurrence: 
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JWs(*) = (x2 + 2 ) F M ( x ) - 4 + 1 ( 4 n = 0,1,.... (3) 

Note that F^x) = 1 = G^x). Also, F3(x) = x2 +1 = (x2 + 2) - 1 = G3(x). Now 

(x2 + 2)G2n+3 (x) - G2n+l(x) = § ( - l ) K ™ (" + ! "K* + ]> ' 21] (x2 + 2 ) " ^ 

fe( } I ^ / 2 ] 
In the last sum, we replace k by k - 2; thus, this sum becomes 

2 ] l (x2+2)"-* 

g^ t a+ i ) / * ] (» + 1 " K* + l) / 2 ] \ x 2 + 2)»+2-*. 
n+2 

+ 
k=2 

We may extend this last sum by including the terms for k - 0 and k = l, since the combina-
torial term vanishes for such values. Similarly, the first sum may be extended to include the term 
for k - n + 2, for the same reason. We also note that 

'/i + l-[(ifc + l)/2]>\, (n + l-[(k + l)/2S)_(n + 2-[(k + l)/2] 
[k/2] ) + { [*/2]-l )-{ [k/2] 

Accordingly, we obtain the following result: 

(*2 +2)G2„+3(x)-G2n+1(x) = S( - i ) K k + D / 2 , (" + 2 "[ i%V ) / 2 1 ) ( x 2 + 2 r " 
which we recognize to equal G2w+5(x). Therefore, the F2n+l(xys and the G2„+1(x)8s satisfy the 
same recurrence, and also have the same initial values. It follows that 

4 + i W = G2n+i(xX n = 0,1,..., for all x. Q.E.D. 
Also solved by Walther Janous and the proposer. 

Between Fibonacci; Lucas, and Legendre 

B-929 Proposed by Harvey J. Hindin, Huntington Station, NY 
(Vol 39, no. 5, November 2001) 

Prove that 
2N-1 

A) F2N=(\/5ll2)^PK(5ll2/2)P2N_l_K(5l/2/2) forJV>l 

and 
2N 

B) L2N+1 = X PK@'21 WN-K^2 12) forN > 0, 
where PK{x) is the Legendre polynomial given by P0(x) = 1, Pt(x) = x, and the recurrence rela-
tion (K + l)PK+l(x) = (2K + l)xPK(x) - KPK_x(x). 

Solution by H.-J. Seiffert, Berlin, Germany 
The sequences of Fibonacci and Lucas polynomials are defined by 

F0(x) = 0, Fx(x) = 1, and Fn+2(x) = xFn+l(x) + Fn(x), n>0, 
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and 
Zo(x) = 2, L^x) = x, and Ln+2(x) = xLn+l(x) +Ln(x), w > 0, 

respectively. We shall prove that, for all real numbers x, 
Y 2N-1 

A) F2N(x) = -rf= X i t (Vx 5 +4/2)P 2 ^_ 1 ^(V?+4/2) fo r#> l , 
Vx + 4 ĵ =o 

and 
2N 

B) L2N+l(x) = xJ^PK(^/x2 +4 /2)P2N_K(^Jx2 +412) fo r#>0 . 
K=0 

It is known from equations (1.7) and (1.8) of [1] that 

Vx2+4 

where a(x) = (x + Vx2+4) / 2 and /?(*) = (x- Vx2+4) / 2. For sufficiently small |z|, let 

L=l 
Then, by (1), 

( i ) 

G(z) - ^T4YiF2N(x)z2N-1 + X W ^ . (2) 
N=l N=0 

On the other hand, the known closed form expression for infinite geometric sums gives 

r / r w a(x) Pipe) 
1 } l~a(x)z l-f/?(x)z? 

so that, by a(x) + fi(x) = x, fi(x) = - 1 , a(x)/?(x) = - 1 , and a(x) - /?(*) = Vx2+4, 

Cfr) = * j . (3) 
l - y x 2 +4z - f z 2 

The Legendre polynomials have the generating function (see [2], p. 190) 

Y PL(x)zL - , l — for small |z|. 
L=O Vl-2xz + z2 

Squaring, replacing x by Vx^f 4 / 2 , and multiplying the obtained identity by x, in view of (3) 
we get 

£ (x£PK{4^* /2)PL_K(^crT4 / 2 ) V = G(z). (4) 
L=OV K=Q J 

The above stated identities A) and B) now follow from (2) and (4) by comparing coefficients. 
Taking x = 1 solves the present proposal. 

Remarks: By analytic continuation, the identities A) and B) remain valid for all complex numbers 
x. Other identities involving Fibonacci and Lucas numbers can be obtained by taking x = J5, 4, 
1/V5, 3/, etc. For example, since F2N(^5) = J5F4N / 3 , from A) with x = V5, we find 
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2N-1 

F4N= I ^ (3 /2 )^_ 1 _ r (3 /2 ) forN>\. 
K=0 

References 
1. A. F. Horadam & Bro. J. M. Mahon. "Pell and Pell-Lucas Polynomials." The Fibonacci 
Quarterly 23.1 (1985):7-20. 
2. F. G. Tricomi. Vorlesungen uber Orthogonalreihen. 2. Auflage, Springer, 1970. 
Also solved by Paul & Bruckman, Kenneth R Davenport, Ovidiu Furdui, Walther Janous, 
and the proposer. 

Author and Title Index 
The TITLE, AUTHOR, ELEMENTARY PROBLEMS, ADVANCED PROBLEMS, and KEY-WORD 
indices for Volumes 1-38.3 are now on The Fibonacci Web Page. Anyone wanting their own copies 
may request them from Charlie Cook at The University of South Carolina, Sumter, by e-mail at 
<ccook@sc.edu>. Copies will be sent by e-mail attachment. PLEASE INDICATE WORDPERFECT 
6.1, MS WORD 97, or WORDPERFECT DOS 5.1. 
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