ON LUCAS \boldsymbol{v}-TRIANGLES

Hong Hu

Department of Mathematics, Huaiyin Teachers College, Huaiyin 223001, Jiangsu Province, P.R. China
(Submitted March 1999-Final Revision March 2002)

1. INTRODUCTION

Let $\mathbb{N}=\{0,1,2, \ldots\}$ and $\mathbb{Z}^{+}=\mathbb{N} \backslash\{0\}$. Let A and B be fixed nonzero integers with $(A, B)=1$, and write $\Delta=A^{2}-4 B$. We will assume $\Delta \neq 0$, which excludes degenerate cases including $|A|=2$ and $B=1$. Define $\left\{u_{n}\right\}_{n \in \mathbb{N}}$ and $\left\{v_{n}\right\}_{n \in \mathbb{N}}$ as follows:

$$
\begin{align*}
& u_{0}=0, u_{1}=1 \text { and } u_{n+1}=A u_{n}-B u_{n-1} \text { for } n \in \mathbb{Z}^{+} ; \tag{1.1}\\
& v_{0}=2, v_{1}=A \text { and } v_{n+1}=A v_{n}-B v_{n-1} \text { for } n \in \mathbb{Z}^{+} . \tag{1.2}
\end{align*}
$$

They are called Lucas sequences. The addition formulas

$$
\begin{equation*}
u_{m+n}=\frac{u_{m} v_{n}+u_{n} v_{m}}{2} \text { and } v_{m+n}=\frac{v_{m} v_{n}+\Delta u_{m} u_{n}}{2} \text { for } m, n \in \mathbb{N} \tag{1.3}
\end{equation*}
$$

are well known. A list of such basic identities can be found in [3].
If $A \neq \pm 1$ or $B \neq 1$, then u_{1}, u_{2}, \ldots are nonzero by [1], and so are $v_{1}=u_{2} / u_{1}, v_{2}=u_{4} / u_{2}, \ldots$. In the case $A^{2}=B=1$, we noted in [1] that $u_{n}=0 \Leftrightarrow 3 \mid n$. If $v_{n}=0$, then $u_{2 n}=u_{n} v_{n}=0$; hence, $3 \mid n$ and $u_{n}=0$, which is impossible since $v_{n}^{2}-\Delta u_{n}^{2}=4 B^{n}$ (cf. [3]). Thus, $v_{0}, v_{1}, v_{2}, \ldots$ are all nonzero.

We set $v_{n}!=\Pi_{0<k \leq n} v_{k}$ for $n \in \mathbb{N}$, and regard an empty product as value 1 . For $n, k \in \mathbb{N}$ with $n \geq k$, we define the Lucas v-triangle $\left\{\begin{array}{l}n \\ k\end{array}\right\}$ as follows:

$$
\left\{\begin{array}{l}
n \tag{1.4}\\
k
\end{array}\right\}=\frac{v_{n}!}{v_{k}!v_{n-k}!} .
$$

(This definition is not new in the case $A=1$ and $B=-1$; the reader may consult Wells [5].) Similarly, in the case $A \neq \pm 1$ or $B \neq 1$, Lucas u-triangles can be defined in terms of the sequence $\left\{u_{n}\right\}_{n \in \mathbb{N}}$ (cf. [1]).

Let q be a positive integer. Clearly, $v_{q} \equiv A^{q}(\bmod B)$ and hence $\left(B, v_{q}\right)=1$. Let v_{q}^{*} denote the largest divisor of v_{q} prime to v_{0}, \ldots, v_{q-1}. Then v_{q}^{*} is odd since $v_{0}=2$. It is known that $\left(v_{m}, v_{n}\right) \in\left\{1,2,\left|v_{(m, n)}\right|\right\}$ for $m, n \in \mathbb{N}$ (cf. [3] or (2.21) of [4]). If $q \mid n$, then $\left(v_{(q, n)}, v_{q}^{*}\right)=1$ and so $\left(v_{q}^{*}, v_{n}\right)=\left(v_{q}^{*},\left(v_{q}, v_{n}\right)\right)=1$.

For $m \in \mathbb{Z}$, we let $D(m)$ denote the ring of rationals in the form a / b with $a \in \mathbb{Z}, b \in \mathbb{Z}^{+}$, and $(b, m)=1$. When $r \in D(m)$, by $x \equiv r(\bmod m)$ we mean that x can be written as $r+m y$ with $y \in D(m)$. For a positive integer q, if $0 \leq k \leq n<q$ then $\left\{\begin{array}{l}n \\ k\end{array}\right\}$ lies in $D\left(v_{q}^{*}\right)$.

Let p be a prime. A famous theorem of Lucas concerning Pascal's triangles (i.e., binomial coefficients) states that

$$
\binom{m p+s}{n p+t} \equiv\binom{m}{n}\binom{s}{t}(\bmod p)
$$

if m, n, s, t are nonnegative integers with $s, t<p$. An analogy to Lucas u-triangles was obtained by Kimball and Webb [2], by Wilson [6] in some special cases, and by Hu and Sun [1] for the general case. In this paper we aim to establish a similar result for Lucas v-triangles. Recall that the sequence $\left\{u_{n}\right\}_{n \in \mathbb{N}}$ is strong divisible, i.e., $\left(u_{m}, u_{n}\right)=\left|u_{(m, n)}\right|$ for all $m, n \in \mathbb{N}$, while $\left\{v_{n}\right\}_{n \in \mathbb{N}}$ is not in general. This makes our goal more challenging.

Our main result is as follows.
Theorem: Let q be a positive integer. For $m, n \in 2 \mathbb{N}=\{0,2,4, \ldots\}$ with $m \geq n$, and $s, t \in \mathbb{N}$ with $q>s \geq t$, we have

$$
\binom{m / 2}{n / 2}\left\{\begin{array}{c}
m q+s \tag{1.5}\\
n q+t
\end{array}\right\} \equiv\binom{m}{n}\left\{\begin{array}{l}
s \\
t
\end{array}\right\}\left(-B^{q}\right)^{\frac{m-n}{2}(n q+t)+\frac{n}{2}(s-t)}\left(\bmod v_{q}^{*}\right) .
$$

A proof of the theorem will be presented in Section 3; it depends on several lemmas given in the next section. Our method is different from that of [5] and [6].

2. THREE LEMMAS

As usual, for a real number x, we use $\lfloor x\rfloor$ to denote the greatest integer not exceeding x.
Lemma 2.1: Let $k \in \mathbb{Z}^{+}$and $q \in \mathbb{N}$. Then

$$
\begin{equation*}
u_{k q}=u_{q} \sum_{i=0}^{\left\lfloor\frac{k-1}{2}\right\rfloor}\binom{k-i-1}{i} v_{q}^{k-1-2 i}\left(-B^{q}\right)^{i} \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
v_{k q}=\sum_{i=0}^{\left\lfloor\frac{k}{2}\right\rfloor} \frac{k}{k-i}\binom{k-i}{i} v_{q}^{k-2 i}\left(-B^{q}\right)^{i}, \tag{2.2}
\end{equation*}
$$

where

$$
\frac{k}{k-i}\binom{k-i}{i} \in \mathbb{Z} \text { for } i=0,1, \ldots,\left\lfloor\frac{k}{2}\right\rfloor .
$$

This known result was included in [3].
From Lemma 2.1, we can deduce
Lemma 2.2: Let $k, q, r \in \mathbb{N}$. Then

$$
2 v_{k q+r} \equiv \begin{cases}2 v_{r}\left(-B^{q}\right)^{k / 2}+\frac{k}{2}\left(-B^{q}\right)^{k / 2-1} \Delta u_{q} u_{r} v_{q}\left(\bmod v_{q}^{2}\right) & \text { if } 2 \mid k, \tag{2.3}\\ \Delta u_{q} u_{r}\left(-B^{q}\right)^{(k-1) / 2}+k\left(-B^{q}\right)^{(k-1) / 2} v_{r} v_{q}\left(\bmod v_{q}^{2}\right) & \text { if } 2 \nmid k .\end{cases}
$$

Moreover, providing $2 \nmid k$, we have

$$
\begin{equation*}
\frac{v_{k q}}{k} \equiv\left(-B^{q}\right)^{(k-1) / 2} v_{q}\left(\bmod v_{q}^{2}\right) . \tag{2.4}
\end{equation*}
$$

Proof: The case $k=0$ is trivial. Below we let $k \in \mathbb{Z}^{+}$. Obviously,

$$
\binom{k-1-\left\lfloor\frac{k-1}{2}\right\rfloor}{\left\lfloor\frac{k-1}{2}\right\rfloor} v_{q}^{k-1-2\left\lfloor\frac{k-1}{2}\right\rfloor}\left(-B^{q}\right)^{\left\lfloor\frac{k-1}{2}\right\rfloor}= \begin{cases}\frac{k}{2}\left(-B^{q}\right)^{k / 2-1} v_{q} & \text { if } 2 \mid k, \\ \left(-B^{q}\right)^{(k-1) / 2} & \text { if } 2 \nmid k .\end{cases}
$$

So, by (2.1), we have

$$
u_{k q} \equiv u_{q} \times \begin{cases}\frac{k}{2}\left(-B^{q}\right)^{k / 2-1} v_{q}\left(\bmod v_{q}^{2}\right) & \text { if } 2 \mid k, \\ \left(-B^{q}\right)^{(k-1) / 2}\left(\bmod v_{q}^{2}\right) & \text { if } 2 \nmid k\end{cases}
$$

Similarly, (2.2) implies that

$$
\begin{aligned}
v_{k q} & \equiv \frac{k}{k-\left\lfloor\frac{k}{2}\right\rfloor}\binom{k-\left\lfloor\frac{k}{2}\right\rfloor}{\left\lfloor\frac{k}{2}\right\rfloor} v_{q}^{k-2\left\lfloor\frac{k}{2}\right\rfloor}\left(-B^{q}\right)^{\left\lfloor\frac{k}{2}\right\rfloor} \\
& \equiv \begin{cases}2\left(-B^{q}\right)^{k / 2}\left(\bmod v_{q}^{2}\right) & \text { if } 2 \mid k, \\
k\left(-B^{q}\right)^{(k-1) / 2} v_{q}\left(\bmod v_{q}^{2}\right) & \text { if } 2 \nmid k .\end{cases}
\end{aligned}
$$

As $2 v_{k q+r}=v_{k q} v_{r}+\Delta u_{k q} u_{r}$, (2.3) follows from the above.
Now suppose that k is odd. By Lemma 2.1,

$$
\begin{aligned}
\frac{v_{k q}}{k} & =\sum_{i=0}^{\frac{k-1}{2}} \frac{1}{k-i}\binom{k-i}{k-2 i} v_{q}^{k-2 i}\left(-B^{q}\right)^{i} \\
& =v_{q}\left(-B^{q}\right)^{(k-1) / 2}+v_{q}^{2} \sum_{0 \leq i \leq \frac{k-3}{2}} \frac{v_{q}^{k-2 i-2}}{k-2 i}\binom{k-i-1}{k-2 i-1}\left(-B^{q}\right)^{i}
\end{aligned}
$$

For any prime p, clearly $p^{3-2} / 3 \in D(p)$, and for $n=4,5, \ldots$ we also have $p^{n-2} / n \in D(p)$ because

$$
(1+p-1)^{n-2} \geq 1+\binom{n-2}{1}(p-1)+(p-1)^{n-2} \geq 2+(n-2)(p-1) \geq n .
$$

When $0 \leq i \leq(k-3) / 2$, by the above, $v_{q}^{k-2 i-2} /(k-2 i) \in D(p)$ for any prime p dividing v_{q}, so $v_{q}^{k-2 i-2} /(k-2 i) \in D\left(v_{q}\right)$. Thus, we have the desired (2.4).
Lemma 2.3: Let q be any positive integer, and let m, n be even integers with $m \geq n \geq 0$. Then

$$
\binom{m / 2}{n / 2}\left\{\begin{array}{l}
m q \tag{2.5}\\
n q
\end{array}\right\} \equiv\binom{m}{n}\left(-B^{q}\right)^{\frac{m-n}{2} n q}\left(\bmod v_{q}^{*}\right) .
$$

Proof: Recall that $\left(v_{q}^{*}, 2 B\right)=1$. In view of (2.4), for $i=1,3,5, \ldots$ we have

$$
\frac{v_{i q}}{i} \equiv\left(-B^{q}\right)^{\frac{i-1}{2}} v_{q}\left(\bmod v_{q}^{2}\right) .
$$

Observe that

$$
\begin{aligned}
\binom{m / 2}{n / 2}_{\substack{0 \leq k<n \\
2 \nmid k}} \frac{v_{(m-k) q}}{v_{(n-k) q}} & =\prod_{0 \leq j<n / 2} \frac{m / 2-j}{n / 2-j} \cdot \prod_{\substack{0 \leq k<n \\
2 \nmid k}} \frac{m-k}{n-k} \cdot \prod_{\substack{0 \leq k<n \\
2 \nmid k}} \frac{v_{(m-k) q} /(m-k)}{v_{(n-k) q} /(n-k)} \\
& =\prod_{0 \leq k<n} \frac{m-k}{n-k} \cdot \prod_{\substack{0 \leq k<n \\
2 \nmid k}} \frac{v_{(m-k) q} /\left((m-k) v_{q}\right)}{v_{(n-k) q} /\left((n-k) v_{q}\right)} \\
& \equiv\left(\begin{array}{l}
m \\
n
\end{array} \prod_{\substack{0 \leq k<n \\
2 \nmid k}} \frac{\left(-B^{q}\right)^{(m-k-1) / 2}}{\left(-B^{q}\right)^{(n-k-1) / 2}}=\binom{m}{n}\left(-B^{q}\right)^{\frac{m-n \cdot n}{2 / 2}}\left(\bmod v_{q}^{*}\right) .\right.
\end{aligned}
$$

[aug.

By (2.2), for $i=2,4,6, \ldots$ we have $v_{i q} \equiv 2\left(-B^{q}\right)^{i / 2}\left(\bmod v_{q}^{2}\right)$, and hence $\left(v_{i q}, v_{q}^{*}\right)=1$.
Whenever $0 \leq j<n q$ and $j \not \equiv q(\bmod 2 q)$, we have $\left(v_{n q-j}, v_{q}^{*}\right)=1$. Also,

$$
2 v_{m q-j}=2 v_{(m-n) q+(n q-j)} \equiv 2 v_{n q-j}\left(-B^{q}\right)^{(m-n) / 2}\left(\bmod v_{q}^{*}\right)
$$

by (2.3). Thus,

$$
\prod_{\substack{0 \leq j<n q \\ 2 q \nmid j-q}} \frac{v_{m q-j}}{v_{n q-j}} \equiv \prod_{\substack{0 \leq j<n q \\ 2 q \nmid j-q}}\left(-B^{q}\right)^{\frac{m-n}{2}}=\left(-B^{q}\right)^{\frac{m-n}{2}\left(n q-\frac{n}{2}\right)}\left(\bmod v_{q}^{*}\right)
$$

Combining the above, we obtain that

$$
\begin{aligned}
\binom{m / 2}{n / 2}\left\{\begin{array}{c}
m q \\
n q
\end{array}\right\} & =\binom{m / 2}{n / 2} \prod_{0 \leq j<n q} \frac{v_{m q-j}}{v_{n q-j}} \\
& =\binom{m / 2}{n / 2} \prod_{\substack{0 \leq k<n \\
2 \nmid k}} \frac{v_{(m-k) q}}{v_{(n-k) q}} \cdot \prod_{\substack{0 \leq j<n q \\
2 q \nmid j-q}} \frac{v_{m q-j}}{v_{n q-j}} \\
& \equiv\binom{m}{n}\left(-B^{q}\right)^{\frac{m-n \cdot n}{2}}\left(-B^{q}\right)^{\frac{m-n}{2}\left(n q-\frac{n}{2}\right)} \\
& =\binom{m}{n}\left(-B^{q}\right)^{\frac{m-n}{2} n q}\left(\bmod v_{q}^{*}\right)
\end{aligned}
$$

This completes the proof of Lemma 2.3.

3. PROOF OF THE THEOREM

Recall that

$$
\left\{\begin{array}{l}
s \\
t
\end{array}\right\} \in D\left(v_{q}^{*}\right)
$$

since $s<q$. Clearly,

$$
\left\{\begin{array}{c}
m q+s \\
n q+t
\end{array}\right\}=\frac{\prod_{(m-n) q<j \leq m q} v_{j}}{\prod_{0<j \leq n q} v_{j}} \cdot \frac{\Pi_{0<r \leq s}\left(2 v_{m q+r}\right)}{\prod_{0<r \leq t}\left(2 v_{n q+r}\right) \cdot \prod_{0<r \leq s-t}\left(2 v_{(m-n) q+r}\right)}
$$

Applying Lemmas 2.2 and 2.3, we then get that

$$
\begin{aligned}
\binom{m / 2}{n / 2}\left\{\begin{array}{c}
m q+s \\
n q+t
\end{array}\right\} & \equiv\binom{m / 2}{n / 2}\left\{\begin{array}{c}
m q \\
n q
\end{array}\right\} \frac{\Pi_{0<r \leq s}\left(2 v_{r}\left(-B^{q}\right)^{m / 2}\right)}{\prod_{0<r \leq t}\left(2 v_{r}\left(-B^{q}\right)^{n / 2}\right) \cdot \prod_{0<r \leq s-t}\left(2 v_{r}\left(-B^{q}\right)^{(m-n) / 2}\right)} \\
& \equiv\binom{m}{n}\left(-B^{q}\right)^{\frac{m-n}{2} n q} \frac{v_{s}!}{v_{t}!v_{s-t}!}\left(-B^{q}\right)^{\frac{m}{2} s-\frac{n}{2} t-\frac{m-n}{2}(s-t)} \\
& \equiv\binom{m}{n}\left\{\begin{array}{l}
s \\
t
\end{array}\right\}\left(-B^{q}\right)^{\frac{m-n}{2}(n q+t)+\frac{n}{2}(s-t)}\left(\bmod v_{q}^{*}\right) .
\end{aligned}
$$

This completes the proof of the Theorem.

ACKNOWLEDGMENT

I am grateful to Professor Zhi-Wei Sun for his great help, and to the anonymous referees for many helpful suggestions.

REFERENCES

1. H. Hu \& Z.-W. Sun. "An Extension of Lucas' Theorem." Proc. Amer. Math. Soc. $\mathbf{1 2 9 . 1 2}$ (2001):3471-78.
2. W. A. Kimball \& W. A. Webb. "Some Congruences for Generalized Binomial Coefficients." Rocky Mountain J. Math. 25 (1995):1079-85.
3. S. Rabinowitz. "Generalized Lucas Sequences Identities." Presented at the 8th International Conference on Fibonacci Numbers and Their Applications. New York, 1998, preprint.
4. P. Ribenboim. "Binary Recurring Sequences and Powers, II." Publ. math. Debrecen 54 (1999):349-75.
5. D. L. Wells. "The Fibonacci and Lucas Triangles Modulo 2." The Fibonacci Quarterly 32.2 (1994):111-23.
6. B. Wilson. "Fibonacci Triangles Modulo p." The Fibonacci Quarterly 36.3 (1998):194-203.

AMS Classification Numbers: 11B39, 11B37, 11B65, 11A07
\&。\%

