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1. INTRODUCTION 

Let N = {0,1,2,...} and T = M \ {0}. Let A and B be fixed nonzero integers with (A,B) = l, 
and write A = A2-4B. We will assume A^O, which excludes degenerate cases including 
\A\ = 2 and B = 1. Define {un}neN and {vn}neN as follows: 

uo = 0, ux = 1 and un+l - Aun - Bun_x for n G Z+; (1.1) 

v0 = 2, vx = A and vn+l = Avn-Bvn_x for n GZ+. (1.2) 

They are called Lucas sequences. The addition formulas 
umv„ + u„vm , vmv„ + Aumii„ jy «,, ,, ^x 

Um+n = m n n m a n ( } y ^ _ m n tnjL for m, II GN (1.3) 

are well known. A list of such basic identities can be found in [3]. 
If A ^ ±1 or B ^ 1, then w1? s^,... are nonzero by [1], and so are vx = u2lul9 v2 = M4/M2, ... . 

In the case A2 = B - 1, we noted in [1] that un = 0 o 31n. IF vw = 0, then uln = i/wvw = 0; hence, 
31n and un = Q, which is impossible since v2~Au2 = 4Bn (cf. [3]). Thus, v0,v1? v2,... are all 
nonzero. 

We set vw! = Ilo<A:<^v^ ^or w G^> anc^ regard an empty product as value 1. For n,k eN 
with n>k,wt define the Lucas v-triangle {£} as follows: 

ia-A (i4) 
(This definition is not new in the case A = l and B = - 1 ; the reader may consult Wells [5].) Simi-
larly, in the case A*±\ or J3*l, Lucas ^triangles can be defined in terms of the sequence 
OUneN (Cf- [ID-

Let q be a positive integer. Clearly, vq = ^ (mod 5) and hence (2?, v )̂ = 1. Let v* denote 
the largest divisor of vq prime to v0,...,v t. Then v* is odd since v0=2. It is known that 
<ym v j G ft 2,| V w ) |} for m,n G N (cf [3] or (2.21) of [4]). If q\n, then ( W vj) = 1 and so 
(^v l l ) = (v;,(v^vw)) = l. 

For m G Z, we let D(w) denote the ring of rationals in the form alb with a G Z, 6 G Z+, and 
(A, /w) = 1. When r GD(M), by x = r (mod wi) we mean that x can be written as r + my with 
j G D(m). For a positive integer q, if 0<k <n<q then {£ } lies in D(v*). 

Let/? be a prime. A famous theorem of Lucas concerning Pascal's triangles (i.e., binomial 
coefficients) states that 

fc:;M:X«)(mod/,) 
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if m, w, s, t are nonnegative integers with s,t<p. An analogy to Lucas u-triangles. was obtained 
by Kimball and Webb [2], by Wilson [6] in some special cases, and by Hu and Sun [1] for the 
general case. In this paper we aim to establish a similar result for Lucas v-triangles. Recall that 
the sequence {un}nM is strong divisible, i.e., (um, un) =|W(Wf„) I for all m,n e N, while {vn}neN is not 
in general This makes our goal more challenging. 

Our main result is as follows. 

Theorem: Let q be a positive integer. For m,n G2N = {0,2,4,...} with m>n, and s,t eN with 
q> s>t, we have 

:/'22){^:,s}•(:){;}(-^)ww,*"', <™^>- <••*> 
A proof of the theorem will be presented in Section 3; it depends on several lemmas given in 

the next section. Our method is different from that of [5] and [6]. 

2e THREE LEMMAS 

As usual, for a real number x, we use L Ĵ to denote the greatest integer not exceeding x. 

Lemma2.1: Let k e Z+ and q GN. Then 

L¥J 

and 
111 

%^^ZPl~V1"2/(-^)/ (2-1) 

=tp-(\7/)^-2'(-^y, (2.2) 
where 

% 

k r*-'1eZ fori = 0,l,...,[-|J. 
k-i\ i 

This known result was included in [3]. 
From Lemma 2.1, we can deduce 

Lemma 2,2: Let k,q,r eN. Then 

\2vr{-B<1t12 +\{-m)kl2-lhuqurvq (modv^) if2|*, 

\Au,ur(-Bqfk-1)n+k(-B^k-^2vrv (modv*) if2j*. I AMgMr( 

Moreover , providing 2\k, w e have 

vfr. _ : (_59) (*- i )« V 9 ( m o d v ^ ) . (2.4) 

Proof: The case £ = 0 is trivial. Below we let k e Z+. Obviously, 

r*-KYV»L¥J(_W¥J-J^- i , f>W*" l v . tf2"*' 
I L¥J J ' |(-5»)(*-1)'2 if 2\k. 
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So, by (2.1), we have 
- v - ^ v Vq vllKJ%lVq \{-B^fl2-\ (mo&vl) if 2|*, 

Ukq U^UBq){k-i)i2 ( m o d 2 ) i f2 |£ 

Similarly, (2.2) implies that 
k 

\2(-Bq)kn (mo&vl) if 21*, 
**~*-|lJ 

[ i fcC-^^-^v, (modv*) if 2|*. 

As 2vtg+r = vAgvr + Aukgur, (2.3) follows from the above. 
Now suppose that k is odd. By Lemma 2.1, 

For any primep, clearly p3"213 eD(p), and for w = 4,5,... we also have pn~2 In eD(p) because 

(1 -h/? -1)""2 > 1 + f^ Y 2 1 ( ^ ~ J ) + O " i)""2 ^ 2 + (/? - 2 ) 0 -1 ) > /?. 

When 0< i< (&-3 ) /2 , by the above, vq~2i~21 (k-2i) &D(p) for any prime/? dividing v so 
vk

q~2i~21 (k - 2i) G D(vq). Thus, we have the desired (2.4). 

Lemma 2.3: Let qbe any positive integer, and let m, w be even integers with m>n>0. Then 

iVoo/- Recall that (v*, 25) = 1. In view of (2.4), for / = 1,3,5,... we have 

^f = (-Bqfivq (modv*). 

Observe that 

T-T v(m-k)g = |-r m/2-j jj m-k j-y v(m-k)g
/(m~k) 

\<k<nV{n-k)q Q<j<nl2n'^~J 0<k<nn~® 0<k<n V(n-k)q ' \n~ * ) 
2|tt 2J* 2|£ 

FT ^zA. rr %-^/((^"^H) 

0<k<n n~k oLL V(n-k)q ' ((* ~ *>*) 
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By (2.2), for / = 2,4,6,... we have viq s 2(-B*y'2 (modv2
q), and hence (vjq, v*) = 1. 

Whenever 0<j<nq and j# q (mod 2#), we have (v y, v*) = 1. Also, 

2%_y = 2v(m_„)g+(m?_y) - 2v„<?_,.(-JB*)<"'-">/2 (mod vp 

by (2.3). Thus, 

TJ ?aa=Ls Y\(-Bq)a?l = (-B^"^ (modvp. 
0<j<nq Vnq-j 0<j<nq 
2qh-q 2q\j-q 

Combining the above, we obtain that 

(ml2\[mq\_(ml2\ n % - / 
l/i/2 JWf"l/ i /2j 11 7~~ 

'm/2\ yw v(m-fc)g T-T vmg-y 
SQ<k<n V(n-k)q 0<j<nq Vnq-j 

2\k 2q\j-q 

This completes the proof of Lemma 2.3. 

3e PROOF OF THE THEOREM 

Recall that 

since s<q. Clearly, 

J mq + ${_ 
\nq +1J " n0<7<„q Vj U0<r<t(2v„q+r) • U0<r<s.,(2v{m_n)q+r)' 

Applying Lemmas 2.2 and 2.3, we then get that 

(ml2\[mq + s\Jml2\\mq\ n o < r ^ (2v r ( - i ?T / 2 ) 
\nl2)\nq + t] l« /2J l^Jn o < r S r (2v r ( -^) ' ' / 2 ) -n o < r , s _ ( (2v r ( -^)( ' " -") / 2 ) 

• & ) 

w \ ( m\a^»i vsl- i jM\t>-V-«?ns-t) 
y"T ' v , ! V , ! 

- ( ^ H * ) ^ ^ * ^ (modv*). 

This completes the proof of the Theorem. 
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