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1. INTRODUCTION

A nonzero m x n (0, 1)-matrix 4 is called a nullspace matrix if each entry (i, j) of A has an
even number of 1's in the set of entries consisting of (7, ) and its rectilinear neighbors. It is called
a nullspace matrix since the existence of an m x n nullspace matrix implies the closed neighbor-
hood matrix of the m x n grid graph is singular over GF'(2). By closed neighborhood matrix, we
mean the adjacency matrix of the graphs with 1's down the diagonal.

In Sections 2 and 3, we review the relationship of the Fibonacci polynomials to nullspace
matrices. In Section 3, we define composite and prime nullspace matrices and present some num-
ber sequences related to the nullspace matrices and pose a question analogous to the famous
question about whether or not there exist infinitely many prime Fibonacci numbers.

2. BACKGROUND

In this paper, all polynomials are over the binary field GF(2). When no confusion results, we
denote the all-zero n-vector simply by 0. See Table 1 for an example of a nullspace matrix.

TABLE 1. A 4 x 4 Nullspace Matrix

1000
1100
1010
0111

If we choose a nonzero vector w € F", where F" is the binary n-fuple space and let w be the
first row of a matrix 4, for each i > 1 there is a unique way to choose the i/ row to make the
number of 1's in the closed neighborhood of each entry in the (i —1)* row even. If 7, is the it
row, the unique way of doing this is given by

r=Br_+r_,,i22, r,=0,rn,=w, )
where B =[b,;] is the n x n tridiagonal (0, 1)-matrix with b;; =1 if and only if |/ - j| <1 (and the

r;'s in (1) are wriiten as column vectors). If 7., = 0 for some positive integer m, then r,, 7,, ..., 1,
are the rows of an m x n nullspace matrix. We can also compute the entries of 7, one at a time by
FLA= 5l 1+ il = 14 7,0 + 11+ 50 ] mod 2.
It follows from the definitions that , = f(B)w fori=0,1,2,..., where f; is the i Fibonacci
polynomial over GF(2):
f;':x-fi—l+f;'—2’ i22’ szOnfl:l' (2)
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In this paper, we are interested in building large nullspace matrices from smaller ones. A
fundamental property of nullspace matrices is given in the following simple proposition.

Proposition 1: Let n and k be positive integers with &£ +1 a multiple of n+1. If there exists an
n x n nullspace matrix, then there also exists a k£ x k¥ nullspace matrix.

To see this another way, if k¥ +1=g(n+1) where q is a positive integer, and if 4 is an nx n
nullspace matrix, then a & x ¥ nullspace matrix can be constructed by letting row and column
numbers n+1, 2(n+1),...,(g—1)(n+1) have all entries equal to zero, creating a ¢ x ¢ array of
n x n squares, putting 4 in one of the n x n squares and filling in the rest of them by "reflecting"
across the lines of zeros. That is, one can take the 4 x 4 nullspace matrix from Table 1 and con-
struct a 9 x 9 nullspace matrix; see Table 2.

TABLE 2. A 9 x 9 Nullspace Matrix

100000001
110000011
101000101
011101110
000000000
011101110
101000101
110000011
100000001

3. NULLSPACE-PRIMES

We call a nullspace matrix that has at least one row or column of zeros a composite nullspace
matrix, otherwise we say it is a prime nullspace matrix. We say that an integer n is nullspace-
prime if there exists an (n—1) x (n—1) nullspace matrix, but for no proper divisor m of n does
there exist an (m—1) x (m—1) nullspace matrix. With the aid of a computer, we have determined
that the first few nullspace-primes are 5, 6, 17, 31, 33, 63, 127, 129, 171, 257, 511, 683. This
sequence does not match any in Sloane's Encyclopedia of Integer Sequences. Other nullspace-
primes include 2047, 2731, 2979, 3277, 3641, and 8191. We prove below that 6 is, in fact, the
only even nullspace-prime. It is easy to see that there exists an # x n nullspace matrix if and only
if n is one less than a multiple of a nullspace-prime.

One could use a simple (albeit, rather slow) sieving algorithm to determine if an integer n is a
nullspace-prime, assuming we know that there exists an (n—1) x (n—1) nullspace matrix (which
can be determined in O(nlog?n) time [1]). For example, 693 is not a nullspace-prime since 693
modulo 33 = 0, though there does exist a 692 x 692 nullspace matrix.

We say two polynomials p,(x) and p,(x) are conjugates if p,(x+1)= p(x). If p(x) is an
irreducible polynomial, we say that the Fibonacci index of p(x) is t if ¢ is the smallest positive
integer such that p(x) divides f,(x). The following is from [1].

Theorem 2 [1]: There exists an n x m nullspace matrix if and only if f,,,(x) and f, ,,(x+1) are
not relatively prime.
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Theorem 2 is a special case of the following result (letting 7 = 0 in Proposition 3 below yields
Theorem 2), also from [1].

Proposition 3: Let X be the closed neighborhood matrix of the m x n grid graph. If r is the
degree of the greatest common divisor of f,,,(x+1) and f,,,,(x), then the fraction of nx1 0-1
vectors z having solutions y to the equation Xy—z is 27",

Proposition 3 was proved using the Primary Decomposition Theorem for linear operators,
also known as the Spectral Decomposition Theorem (cf. [4]).

To illustrate Theorem 2, there exists a 16 x 16 nullspace matrix because f,(x) has the self-
conjugate irreducible factor and there exists a 32 x 32 nullspace matrix because f;;(x) has the
conjugate pair of irreducible factors x° +x* + x> +x+1and ¥’ +x* + x? + x +1.

Using Theorem 2, we can prove that there is only one even nullspace-prime.

Fact 4: The only even nullspace-prime is 6.

Proof: As there do not exist 1 x1 or 3 x 3 nullspace matrices, 2 and 4 are not nullspace-
primes. Let 7> 6 be an even integer and suppose n were a nullspace-prime. Then there exists an
(n—1) x (n—1) nullspace matrix. Hence, by Theorem 2, f,(x) and f,(x+1) have a common
factor. It was shown in Lemma 4, part (3), of [1] (using induction), that f,, = xf;? for all n>0.
Lemma 4, part (5), of [1] states that f,,,(x) = f,,(x)f,(xf,,(x)), for m,n>0. It follows that either
there exists an (4 —1) x (4 —1) nullspace matrix, in which case 7 is not a nullspace-prime, or that x
and x+1 are a conjugate pair of factors of f,(x) and f,(x+1). Using Lemma 4 of [1] and induc-
tion, it is not hard to prove that x+1 is a factor of f, if and only if 3|k and this property also
happens to be a special case of Proposition 5(b) of [1]. Hence, we have that 6|n, which implies
that » is not a nullspace-prime. O

For completeness, we note that Proposition 5(b) from [1] states that, if p(x) is an irreducible
polynomial other than 1 or x with Fibonacci index ¢, then p(x)|f,(x) if and only if #|r. The proof
of this property is based on Lemma 4 of [1].

We state a theorem from [3] that follows from results in [1]. Recall that B is the n x n tri-
diagonal matrix defined in Section 2.

Theorem 5 [3]: The set of all vectors w that can be the first row of an m x n nullspace matrix is
equal to the nullspace N, of f,..(B). Ifd,, (x) is the greatest common divisor of f,,,(x+1)
and f,,,(x), then the nullspace of d,,,(B) is equal to N,,, and has dimension equal to the
degree of d,,,,.

As can be concluded from the results in [1] and [3], if an m x » nullspace matrix has a row of
zeros and if the first such row is the (j + 1), then j+1 divides m+1 and row r is all zeros if and
only if 7 is a multiple of j+1. The same is true of columns (with 7 in place of m), since a matrix
is a nullspace matrix if and only if its transpose is.

As we noted above, 63 is a nullspace-prime, so there is no way to "piece together" square
nullspace matrices to get a 62 x 62 nullspace matrix. But there does exist a 6 x 8 nullspace
matrix. A 9 x 7 array of this nullspace matrix and its reflections, with rows and columns of zeros
in between, can be used to construct a composite 62 x 62 nullspace matrix. Therefore, if 7 is a
nullspace-prime, there may exist an (n—1) x (n—1) composite nullspace matrix. But it is not hard
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to show that there must also exist an (7—1) x (n—1) prime nullspace matrix (the sum of the
62 x 62 composite nullspace matrix and its 90 degree rotation is a prime nullspace matrix). This
situation, and more, is described in the following theorem; an example is given following the proof
of the theorem.

Theorem 6: Let n be an even positive integer and let d,,,(x) have positive degree and be the
greatest common divisor of f,,,(x) and f,,,(x+1). Then:

(1) Every nxn nullspace matrix is prime if and only if every irreducible factor of d,,,(x) has
Fibonacci index equal to 7+1.

(2) Every nxn nullspace matrix is composite if and only if d,,,(x) divides f,,,(x) for some
t+1+#0 less than n+1.

Proof: Let p,, p,, ..., p, be the irreducible factors of d,,;, and let W, be the nullspace of
pi(B) fori=12,.. k, where B is the tridiagonal matrix defined above. We note that the ¥}
intersection W, = {0} for i # j, and that each W, is invariant under multiplication by B (Ba, W]
for each a; €W). So the nullspace of d,,,(B) is equal to the direct sum WO W, ® .- ®W,. By
Theorem 5, this is equal to the set of vectors that can be the first row of an n x n nullspace
matrix. Choose a nonzero vector a; €W, for each i. Let fbe any polynomial. Then f(B)(a; +
o, +--a;)=0 if and only if f(B)a, =0 for each i, and this happens if and only if fis divisible by
p,; for each i. If some p, has Fibonacci index ¢ +1 where 7 < n, then every nonzero vector in W] is
the first row of an » x » nullspace matrix with (¢ +1)® row all zeros. If there is no such ¢, then
each n x n nullspace matrix is prime, establishing (1).

Letting the polynomial f above be d,,, it is clear that if d,,, divides f,,, for some 7 #0 less
than n, then every n x n nullspace matrix has (z + 1)* row all zeros. And if there is no such ¢, then
the vector a, +a, +---+a,, where «; is a nonzero vector in W, for each i, is the first row of a
prime » x n nullspace matrix. 0

For example, every 32 x 32 nullspace matrix is prime because
Ay (0) = (F +x* + 2 +x + D2+ + P +x +1)?

and each of these factors has Fibonacci index 33. But no 98 x 98 nulispace matrix is prime be-
cause dyo(x) =dy;(x). Every 98 x 98 nullspace matrix has row and column numbers 33 and 66
with all entries zero.
Corollary 7: If n+1 is a prime number, then there exists no »# x n composite nullspace matrix.

We now pose our main open question,
Question 1: Are there an infinite number of nullspace-primes?

One might also ask whether or not a polynomial time algorithm exists to determine if an inte-
ger is nullspace-prime or not.

What more can be said about the distribution of nullspace-primes? From the few listed above,
we can see that many take the form 2* + 1, but there are many nullspace primes that are not of this
form; being of this form does not guarantee being nullspace-prime, take for example 65. In gen-
eral, Fibonacci polynomials of the form £, (x) and f,_,(x) have many distinct factors [3], as
do those with indices that are of the form (2% +1)/p, where p is a "small" prime. For example,
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Jin has eleven distinct nontrivial factors and fi4, has 31 distinct nontrivial factors. Thus, it is not
surprising, given the results from [3], that many of these indices turn out to be nullspace-primes.
What is not fully understood is how to characterize more precisely when an integer if nullspace-
prime, even if it is of the form 2% +1.

4. SUPER NULLSPACE-PRIMES

Define n to be super nullspace-prime if there exists no (n—1) x (n—1) composite nullspace
matrix and there exists an (7 —1) x (n—1) nullspace matrix. As mentioned above, 63 is nullspace-
prime, but not super nullspace-prime. But 33 is super nullspace-prime because there does not
exist a 2 x 10 nullspace matrix. Or, using Theorem 6(1), we see that

dyy ()= (0 +x* + 3 +x + D2 + %% +x2 +x + 1)

and each of these two factors has Fibonacci index 33. The integers 5, 6, 17, 31, 33, 127, 129,
171, 257, 511, 683 are super nullspace-prime. Of course, although 29 is prime, 29 is not null-
space-prime or super nullspace-prime since there does not exist a 28 x 28 nullspace matrix.

We know from [3] that, if 7 =2% where k >3, or n=2* —2 where k >3, that there exists an
n x n nullspace matrix. Thus, if » is prime and either n—1=2F or n—1=2¥ -2, then n+1 is
super nullspace-prime, such as 7 =257. But it seems likely that in order to determine whether an
integer is super nullspace-prime requires factoring that integer or computing the Fibonacci indices
of a number of polynomials, if we use the criteria described in Theorem 6(1), neither of which we
know how to do efficiently (i.e., in polynomial time).

Conjecture 2: There are an infinite number of super nullspace-primes.

Note that, if the conjecture is false, then there are only finitely many Mersenne primes. We
leave as an open problem determining how many super nullspace composites there are: integers,
such as 99, which are such that there exists an (n—1) x (n—1) nullspace matrix and every
(n—1) x (n—1) nullspace matrix is composite. Likewise, how many integers, such as 63, are
nullspace-prime but not super nullspace-prime?
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