HEPTAGONAL NUMBERS IN THE LUCAS SEQUENCE AND DIOPHANTINE EQUATIONS $x^{2}(5 x-3)^{2}=20 y^{2} \pm 16$

B. Srinivasa Rao
Department of Mathematics, Osmania University, Hyderabad - 500 007. A.P., India

(Submitted July 2000)

1. INTRODUCTION

The numbers of the form $\frac{m(5 m-3)}{2}$, where m is any positive integer, are called heptagonal numbers. That is, $1,7,18,34,55,81, \ldots$, listed in [4] as sequence number 1826. In this paper, it is established that $1,4,7$, and 18 are the only generalized heptagonal numbers (where m is any integer) in the Lucas sequence $\left\{L_{n}\right\}$. As a result, the Diophantine equations of the title are solved. Earlier, Cohn [1] identified the squares (listed in [4] as sequence number 1340) and Luo (see [2] and [3]) identified the triangular and pentagonal numbers (listed in [4] as sequence numbers 1002 and 1562, respectively) in $\left\{L_{n}\right\}$.

2. IDENTITIES AND PRELIMINARY LEMMAS

We have the following well-known properties of $\left\{L_{n}\right\}$ and $\left\{F_{n}\right\}$:

$$
\begin{gather*}
L_{-n}=(-1)^{n} L_{n} \text { and } F_{-n}=(-1)^{n+1} F_{n} \tag{1}\\
2 \mid L_{n} \text { iff } 3 \mid n \text { and } 3 \mid L_{n} \text { iff } n \equiv 2(\bmod 4) ; \tag{2}\\
L_{n}^{2}=5 F_{n}^{2}+4(-1)^{n} \tag{3}
\end{gather*}
$$

If $m \equiv \pm 2(\bmod 6)$, then the congruence

$$
\begin{equation*}
L_{n+2 k m} \equiv(-1)^{k} L_{n}\left(\bmod L_{m}\right) \tag{4}
\end{equation*}
$$

holds, where k is an integer.
Since N is generalized heptagonal if and only if $40 N+9$ is the square of an integer congruent to $7(\bmod 10)$, we identify those n for which $40 L_{n}+9$ is a perfect square. We begin with
Lemma 1: Suppose $n \equiv 1,3, \pm 4$, or $\pm 6(\bmod 18200)$. Then $40 L_{n}+9$ is a perfect square if and only if $n \equiv 1,3, \pm 4$, or ± 6.

Proof: To prove this, we adopt the following procedure: Suppose $n \equiv \varepsilon(\bmod N)$ and $n \neq \varepsilon$. Then n can be written as $n=2 \cdot \delta \cdot 2^{\theta} \cdot g+\varepsilon$, where $\theta \geq \gamma$ and $2 \nmid g$. And since, for $\theta \geq \gamma$, $2^{\theta+s} \equiv 2^{\theta}(\bmod p)$, taking

$$
m= \begin{cases}\mu \cdot 2^{\theta} & \text { if } \theta \equiv \zeta(\bmod s) \\ 2^{\theta} & \text { otherwise }\end{cases}
$$

we get that

$$
\begin{equation*}
m \equiv c(\bmod p) \text { and } n=2 k m+\varepsilon, \text { where } k \text { is odd. } \tag{5}
\end{equation*}
$$

Now, by (4), (5), and the fact that $m \equiv \pm 2(\bmod 6)$, we have

$$
40 L_{n}+9=40 L_{2 k m+\varepsilon}+9 \equiv 40(-1)^{k} L_{\varepsilon}+9\left(\bmod L_{m}\right)
$$

Since either m or n is not congruent to 2 modulo 4 we have, by (3), the Jacobi symbol

$$
\begin{equation*}
\left(\frac{40 L_{n}+9}{L_{m}}\right)=\left(\frac{-40 L_{\varepsilon}+9}{L_{m}}\right)=\left(\frac{L_{m}}{M}\right) . \tag{6}
\end{equation*}
$$

But, modulo $M,\left\{L_{n}\right\}$ is periodic with period P (i.e., $L_{n+P t} \equiv L_{n}(\bmod M)$ for all integers $\left.t \geq 0\right)$. Thus, from (1) and (5), we have $\left(\frac{L_{m}}{M}\right)=-1$. Therefore, by (6), it follows that $\left(\frac{40 L_{n}+9}{L_{m}}\right)=-1$ for $n \neq \varepsilon$, showing that $40 L_{n}+9$ is not a perfect square. For each value of $n=\varepsilon$, the corresponding values are tabulated in Table A.

TABLE A

ε	N	δ	γ	s	p	μ	$\zeta(\bmod s)$	$c(\bmod p)$	M	P
1	$2^{2} \cdot 5$	5	1	4	30	5	2, 3	$2, \pm 10,16$	31	30
3	$2^{2} \cdot 5 \cdot 13$	$5 \cdot 13$	1	20	50	5.13	$\begin{gathered} 3, \pm 5,9 \\ 13,19 . \\ \hline 6,8,16 \\ 18 . \end{gathered}$	$\begin{aligned} & \pm 2, \quad \pm 4, \\ & \pm 16, \quad \pm 20, \\ & \pm 22, \pm 24 . \end{aligned}$	151	50
± 4	$2^{2} \cdot 5^{2}$	5^{2}	1	36	270	5^{2} 5	$\begin{gathered} 7,16,34 \\ 35 . \\ \hline \end{gathered}$ $\begin{aligned} & 2, \pm 4, \pm 5, \\ & \pm 9,10,11, \\ & \pm 13, \quad 14, \\ & 28,30 . \end{aligned}$	2,8, ± 20, ± 40, 46, 62, 64, ± 80, 94, 98, ± 110, 122, 124, 130, 136, 152, 166, 182, 212, 218, 226, 244, 256, 260.	271	270
± 6	$2^{3} \cdot 5^{2} \cdot 7$	$5^{2} \cdot 7$	2	12	156	5 5	0,10.	$\begin{gathered} 4,8,16, \\ 64,80, \\ 100 . \end{gathered}$	79	78

Since the L.C.M. of $\left(2^{5} \cdot 5,2^{2} \cdot 5 \cdot 13,2^{2} \cdot 5^{2}, 2^{3} \cdot 5^{2} \cdot 7\right)=18200$, Lemma 1 follows from Table A.

Lemma 2: $40 L_{n}+9$ is not a perfect square if $n \neq 1,3, \pm 4$, or $\pm 6(\bmod 18200)$.
Proof: We prove the lemma in different steps, eliminating at each stage certain integers n congruent modulo 18200 for which $40 L_{n}+9$ is not a square. In each step, we choose an integer M such that the period $P\left(\right.$ of the sequence $\left.\left\{L_{n}\right\} \bmod M\right)$ is a divisor of 18200 and thereby eliminate certain residue classes modulo P. We tabulate these in the following way (Table B).

HEPTAGONAL NUMBERS IN THE LUCAS SEQUENCE AND DIOPHANTINE EQUATIONS $x^{2}(5 x-3)^{2}=20 y^{2} \pm 16$

TABLE B

$\begin{aligned} & \text { Period } \\ & P \end{aligned}$	$\underset{M}{\text { Modulus }}$	Required values of n where $\left(\frac{40 L_{n}+9}{m}\right)=-1$	Left out values of $\boldsymbol{n}(\bmod \boldsymbol{k})$ where k is a positive integer
10	11	$\pm 2,9$.	$0,1, \pm 3,4,5$ or $6(\bmod 10)$
50	101	$\begin{aligned} & 0,11, \pm 15, \pm 16,17, \pm 20, \pm 24,27, \\ & 43,45,47 \text {. } \end{aligned}$	$\begin{gathered} 1,3, \pm 4, \pm 6, \pm 10,13,21,23 \\ 25 \text { or } 31(\bmod 50) \end{gathered}$
	151	5, 7, $\pm 14,33,37,41$.	
100	3001	$\pm 10,13,21,23, \pm 44,53,71,75$.	$\begin{gathered} 1,3, \pm 4, \pm 6,25,31, \pm 40, \pm 46 \\ 51,63,73 \text { or } 81(\bmod 100) \\ \hline \end{gathered}$
14	29	0, 5, 13.	$\begin{gathered} 1,3, \pm 4, \pm 6, \pm 104, \pm 246,281 \\ \pm 340(\bmod 700) \end{gathered}$
28	13	$9, \pm 10, \pm 12,15,17,21,23,25$.	
70	71	11, 15, 31, 53, 63.	
	911	$\pm 16, \pm 20$.	
700	701	$\begin{aligned} & \pm 60, \pm 106, \pm 146, \pm 204, \quad 231, \\ & \pm 254, \pm 304, \pm 306,563,651 . \end{aligned}$	
350	54601	323	
26	521	$0, \pm 8, \pm 9, \pm 10, \pm 11, \pm 12,19$.	$\begin{gathered} 1,3, \pm 4, \pm 6, \pm 2346 \text { or } 7281 \\ (\bmod 9100) \end{gathered}$
52	233	$\pm 5, \pm 20, \pm 21, \pm 24,29,39,49$.	
130	131	$\begin{aligned} & 23, \pm 30,33,51, \pm 54, \pm 56,91, \\ & 103,111 . \end{aligned}$	
	24571	53.	
650	3251	$\pm 46, \pm 106, \pm 154, \pm 256, \pm 306$.	
910	50051	± 386.	
8	3	0, 5, 7.	$1,3, \pm 4, \pm 6(\bmod 18200)$
40	41	± 14.	
728	232961	± 202.	
1400	28001	281.	

3. MAIN THEOREM

Theorem:

(a) L_{n} is a generalized heptagonal number only for $n=1,3, \pm 4$, or ± 6.
(b) L_{n} is a heptagonal number only for $n=1, \pm 4$, or ± 6.

Proof:

(a) The first part of the theorem follows from Lemmas 1 and 2.
(b) Since an integer N is heptagonal if and only if $40 N+9=(10 m-3)^{2}$, where m is a positive integer, we have the following table.

TABLE C

n	1	3	± 4	± 6
L_{n}	1	4	7	18
$40 L_{n}+9$	7^{2}	13^{2}	17^{2}	27^{2}
m	1	-1	2	3
F_{n}	1	2	± 3	± 8

HEPTAGONAL NUMBERS IN THE LUCAS SEQUENCE AND DIOPHANTINE EQUATIONS $x^{2}(5 x-3)^{2}=20 y^{2} \pm 16$

4. SOLUTIONS OF CERTAIN DIOPHANTINE EQUATIONS

It is well known that if $x_{1}+y_{1} \sqrt{D}$ (where D is not a perfect square, x_{1}, y_{1} are least positive integers) is the fundamental solution of Pell's equation $x^{2}-D y^{2}= \pm 1$, then the general solution is given by $x_{n}+y_{n} \sqrt{D}=\left(x_{1}+y_{1} \sqrt{D}\right)^{n}$. Therefore, by (3), it follows that

$$
\begin{equation*}
L_{2 n}+\sqrt{5} F_{2 n} \text { is a solution of } x^{2}-5 y^{2}=4 \tag{7}
\end{equation*}
$$

while

$$
\begin{equation*}
L_{2 n+1}+\sqrt{5} F_{2 n+1} \text { is a solution of } x^{2}-5 y^{2}=-4 \tag{8}
\end{equation*}
$$

We have the following two corollaries.
Corollary 1: The solution set of the Diophantine equation

$$
\begin{equation*}
x^{2}(5 x-3)^{2}=20 y^{2}-16 \tag{9}
\end{equation*}
$$

is $\{(1, \pm 1),(-1, \pm 2)\}$.
Proof: Writing $X=x(5 x-3) / 2$, equation (9) reduces to the form

$$
\begin{equation*}
X^{2}=5 y^{2}-4 \tag{10}
\end{equation*}
$$

whose solutions are, by (8), $L_{2 n+1}+\sqrt{5} F_{2 n+1}$ for any integer n.
Now $x=m, y=b$ is a solution of $(9) \Leftrightarrow \frac{m(5 m-3)}{2}+\sqrt{5} b$ is a solution of (10) and the corollary follows from Theorem 1(a) and Table C.

Similarly, we can prove the following.
Corollary 2: The solution set of the Diophantine equation

$$
x^{2}(5 x-3)^{2}=20 y^{2}+16
$$

is $\{(2, \pm 3),(3, \pm 8)\}$.

REFERENCES

1. J. H. E. Cohn. "Lucas and Fibonacci Numbers and Some Diophantine Equations." Proc. Glasgow Math. Assn. 7 (1965):24-28.
2. Ming Luo. "On Triangular Lucas Numbers." In Applications of Fibonacci Numbers 4:23140. Ed. G. E. Bergum et al. Dordrecht: Kluwer, 1991.
3. Ming Luo. "Pentagonal Numbers in the Lucas Sequence." Portugaliae Mathematica 53.3 (1996):325-29.
4. N. J. A. Sloane. A Handbook of Integer Sequences. New York: Academic Press, 1973.

AMS Classification Numbers: 11B39, 11D25, 11B37

