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1. INTRODUCTION AND BACKGROUND. 
In the present note we shall give two proofs of a property of the poly-Bernoulli numbers, the 

closed formula for negative index poly-Bernoulli numbers given by Arakawa and Kaneko [1]. 
The first proof uses weighted Stirling numbers of the second kind (see [2], [3]). The second, 
much simpler, proof is due to Zeilberger. 

In Kaneko's paper, "On Poly-Bemoulli Numbers" [5], the poly-Bernoulli numbers, which 
generalize the classical Bernoulli numbers, are defined and studied. For every integer k9 called the 
index, we define a sequence of rational numbers B^ (« = 0,1,2,...), which we refer to as poly-
Bernoulli numbers, by 

lLifc(.)|z=1_e., = | B ^ . (1) 

Here, for any integer k9 Llk(z) denotes the formal power series ZJ^z'V/w*, which is the k^ 
polylogarithm if k > 1 and a rational function if k < 0. When k =1, B^ is the usual Bernoulli 
number (with B} = 1 /2). In [4] Kaneko obtained an explicit formula for Bk

n: 

where {%} is an integer referred to as a Stirling number of the second kind [6]. 

2, CLOSED FORMULA 

Theorem 2d (Closed Formula): For any w, k > 0, we have 

**-iw{j:!}C:i}- p> 
We need two lemmas. We use the notation and numeration of the equations in Carlitz's 

paper [3]. 

Lemma 2.1: 

ii-Wrifyfy = H)"'!{m} = H)"^R(», t, i), (4) 
where 

Proof: In order to prove this lemma, we calculate the generating function: 

i0£<-H"){s}S-s<-<7K{s}S 
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: Z, (_1)^ I I P1- ji = / i _ / i „ z\y+i> ̂ y * e generalized binomial theorem, 

= e-*(e-* - if = £*!R(/i, *, lX-l)"»7? by [3], (3.9). 

Lemma 2.2: 

£ZBwt*y = Z/»y(*)^0') (5) 

where p / x ) = 7! I " 0R(n, j , l)x". 

Proof: By (2), we have 

Z Z B - V / = £ 1 1 ; f n r H r ^ W i ) * W , by pi, (3.4), 
00 00 CO 00 / \ / f 1 \ 

=ZZZ E"(7R(M,o (-Dn(-i)^'CW 
w=0 &=Q m=0 *=0 V / • V I J J 

= Z | ) A 0 ' X - l ) " | ; f 7 l ( - i r ™ l f c } « " , by Lemma 2.1, 

= Z ZftCy)(-ir(-i)"^!R(», Al)*" = X ACO'ifX",', i)*" = fipt(x)pt(y). 
£=0 n=Q £=0 n=0 £=0 

Proof of (3): To prove (3), we compare the coefficients on both sides of (5). In the course 
of Arakawa and Kaneko's proof they prove the following proposition. 

Proposition 2.1: For n > 05 

I(-l)'Bft = 0. 
^=0 

Proof: We offer a more direct proof: 

£=0 £=0 m=0 ^ J 

^ - i r l i l - i r ^ ^ + l / h l , by [4], (6.20), 

= (-Dn ±{-\)mm\ {;+Jl=nysl n + l=o. 

3. ANOTHER PROOF 

In Kaneko's paper [4], he obtained the symmetric formula: 

Y Ywk — *—= - (6) 
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By using (6), D. Zeilberger gives a much simpler proof of (3) as follows: 
-k x y Qx+y 

fc>Ow>o n. K\ e -te e y>0 

= S T T T ^ O + W - eXy<rex)ij+1)0 - ^ y (-v) 

= I T-^Dja-o^D.ta-^)^1]. 
/so U + V 

Now using the usual generating function for the Stirling numbers of the second kind {£}, i.e., 

sr [n\un _{eu-lf 
n>k 

he obtains: 
jn ,Jfc 

«>0fc>0 
(-iy+ic/+i)i ^ , U + lf «i 

xD, (-iy+1o+D! z { / + I } F 

-z^zfriftzfriHi 
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