ON THE ALMOST HILBERT-SMITH MATRICES

Dursun Tașci
Gazi University, Faculty of Science, Dept. of Math., 06500 Teknikokullar-Ankara, Turkey
\section*{Ercan Altinișik}
Selçuk University, Akören Ali Riza Ercan Vocational College, 42461 Akören-Konya, Turkey

(Submitted July 2000-Final Revision June 2001)

1. INTRODUCTION

The study of GCD matrices was initiated by Beslin and Ligh [5]. In that paper the authors investigated GCD matrices in the direction of their structure, determinant, and arithmetic in Z_{n}. The determinants of GCD matrices were investigated in [6] and [11]. Furthermore, many other results on GCD matrices were established or conjectured (see [2]-[4], [7]-[10], and [12]).

In this paper we define an $n \times n$ matrix $S=\left(s_{i j}\right)$, where $s_{i j}=\frac{(i, j)}{i j}$, and call S the "almost Hilbert-Smith matrix." In the second section we calculate the determinant and the inverse of the almost Hilbert-Smith matrix. In the last section we consider a generalization of the almost HilbertSmith matrix.

2. THE STRUCTURE OF THE ALMOST HILBERT-SMITH MATRIX

The $n \times n$ matrix $S=\left(s_{i j}\right)$, where $s_{i j}=\frac{(i, j)}{i j}$, is called the almost Hilbert-Smith matrix. In this section we present a structure theorem and then calculate the value of the determinant of the almost Hilbert-Smith matrix. The following theorem describes the structure of the almost HilbertSmith matrix.

Theorem 1: Let $S=\left(s_{i j}\right)$ be the $n \times n$ almost Hilbert-Smith matrix. Define the $n \times n$ matrix $A=\left(a_{i j}\right)$ by

$$
a_{i j}= \begin{cases}\frac{\sqrt{\phi(j)}}{0^{\prime}} & \text { if } j \mid i, \\ 0^{i} & \text { otherwise }\end{cases}
$$

where ϕ is Euler's totient function. Then $S=A A^{T}$.
Proof: The $i j$-entry in $A A^{T}$ is

$$
\left(A A^{T}\right)_{i j}=\sum_{k=1}^{n} a_{i k} a_{j k}=\sum_{\substack{k|i \\ k| j}} \frac{\sqrt{\phi(k)}}{i} \frac{\sqrt{\phi(k)}}{j}=\frac{1}{i j} \sum_{k \mid(i, j)} \phi(k)=\frac{(i, j)}{i j}=s_{i j}
$$

Corollary 1: The almost Hilbert-Smith matrix is positive definite, and hence invertible.
Proof: The matrix $A=\left(a_{i j}\right)$ is a lower triangular matrix and its diagonal is

$$
\left(\frac{\sqrt{\phi(1)}}{1}, \frac{\sqrt{\phi(2)}}{2}, \ldots, \frac{\sqrt{\phi(n)}}{n}\right) .
$$

It is clear that $\operatorname{det} A=\frac{1}{n!}[\phi(1) \phi(2) \ldots \phi(n)]^{1 / 2}$ and $\phi(i)>0$ for $1 \leq i \leq n$. Since $\operatorname{det} A>0, \operatorname{rank}(S)=$ $\operatorname{rank}\left(A A^{T}\right)=\operatorname{rank}(A)=n$. Thus, S is positive definite.

Corollary 2: If S is the $n \times n$ almost Hilbert-Smith matrix, then

$$
\operatorname{det} S=\frac{1}{(n!)^{2}} \phi(1) \phi(2) \ldots \phi(n) .
$$

Proof: By Theorem 1, and since the matrix A is a lower triangular matrix, the result is immediate.

The matrix A in Theorem 1 can be written as $A=E \Lambda^{1 / 2}$, where the $n \times n$ matrices $E=\left(e_{i j}\right)$ and $\Lambda=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right)$ are given by

$$
e_{i j}= \begin{cases}\frac{1}{i} & \text { if } j \mid i \tag{1}\\ 0 & \text { otherwise }\end{cases}
$$

and $\lambda_{j}=\phi(j)$. Thus, $S=A A^{T}=\left(E \Lambda^{1 / 2}\right)\left(E \Lambda^{1 / 2}\right)^{T}=E \Lambda E^{T}$.
Theorem 2: Let $S=\left(s_{i j}\right)$ be the $n \times n$ almost Hilbert-Smith matrix. Then the inverse of S is the matrix $B=\left(b_{i j}\right)$ such that

$$
b_{i j}=i j \sum_{\substack{i|k \\ j| k}} \frac{1}{\phi(k)} \mu\left(\frac{k}{i}\right) \mu\left(\frac{k}{j}\right),
$$

where μ denotes the Möbius function.
Proof: Let $E=\left(e_{i j}\right)$ be the matrix defined in (1) and the $n \times n$ matrix $U=\left(u_{i j}\right)$ be defined as follows:

$$
u_{i j}= \begin{cases}j \mu\left(\frac{i}{j}\right) & \text { if } j \mid i \\ 0 & \text { otherwise }\end{cases}
$$

Calculating the $i j$-entry of the product $E U$ gives

$$
(E U)_{i j}=\sum_{k=1}^{n} e_{i k} u_{k j}=\sum_{\substack{k|i \\ j| k}} \frac{1}{i} j \mu\left(\frac{k}{j}\right)=\frac{j}{i} \sum_{k \left\lvert\, \frac{1}{j}\right.} \mu(k)= \begin{cases}1 & \text { if } i=j, \\ 0 & \text { if } i \neq j .\end{cases}
$$

Hence, $U=E^{-1}$. If $\Lambda=\operatorname{diag}(\phi(1), \phi(2), \ldots, \phi(n))$, then $S=E \Lambda E^{T}$. Thus, $S^{-1}=U^{T} \Lambda^{-1} U=\left(b_{i j}\right)$, where

$$
b_{i j}=\left(U^{T} \Lambda^{-1} U\right)_{i j}=\sum_{k=1}^{n} \frac{1}{\phi(k)} u_{k i} u_{k j}=i j \sum_{\substack{i j|k \\ j| k}} \frac{1}{\phi(k)} \mu\left(\frac{k}{i}\right) \mu\left(\frac{k}{j}\right) .
$$

Example 1: Let $S=\left(s_{i j}\right)$ be the 4×4 almost Hilbert-Smith matrix,

$$
S=\left[\begin{array}{cccc}
1 & \frac{1}{2} & \frac{1}{3} & \frac{1}{4} \\
\frac{1}{2} & \frac{1}{2} & \frac{1}{6} & \frac{1}{4} \\
\frac{1}{3} & \frac{1}{6} & \frac{1}{3} & \frac{1}{12} \\
\frac{1}{4} & \frac{1}{4} & \frac{1}{12} & \frac{1}{4}
\end{array}\right] .
$$

By Theorem 2, $S^{-1}=\left(b_{i j}\right)$, where

$$
\begin{aligned}
& b_{11}=1 \cdot 1 \cdot\left(\frac{\mu(1) \mu(1)}{\phi(1)}+\frac{\mu(2) \mu(2)}{\phi(2)}+\frac{\mu(3) \mu(3)}{\phi(3)}+\frac{\mu(4) \mu(4)}{\phi(4)}\right)=\frac{5}{2}, \\
& b_{12}=1 \cdot 2 \cdot\left(\frac{\mu(2) \mu(1)}{\phi(2)}+\frac{\mu(4) \mu(2)}{\phi(4)}\right)=-2, b_{13}=1 \cdot 3 \cdot \frac{\mu(3) \mu(1)}{\phi(3)}=-\frac{3}{2}, \\
& b_{14}=1 \cdot 4 \cdot \frac{\mu(4) \mu(1)}{\phi(4)}=0, \quad b_{22}=2 \cdot 2 \cdot\left(\frac{\mu(1) \mu(1)}{\phi(2)}+\frac{\mu(2) \mu(2)}{\phi(4)}\right)=6, \quad b_{23}=0, \\
& b_{24}=2 \cdot 4 \cdot \frac{\mu(2) \mu(1)}{\phi(4)}=-4, \quad b_{33}=3 \cdot 3 \cdot \frac{\mu(1) \mu(1)}{\phi(3)}=\frac{9}{2}, \quad b_{34}=0, \quad b_{44}=4 \cdot 4 \cdot \frac{\mu(1) \mu(1)}{\phi(4)}=8 .
\end{aligned}
$$

Therefore, since S^{-1} is symmetric, we have

$$
S^{-1}=\left[\begin{array}{rrrr}
\frac{5}{2} & -2 & -\frac{3}{2} & 0 \\
-2 & 6 & 0 & -4 \\
-\frac{3}{2} & 0 & \frac{9}{2} & 0 \\
0 & -4 & 0 & 8
\end{array}\right] .
$$

3. GENERALIZATION OF THE ALMOST HILBERT-SMITH MATRIX

In this section we consider an $n \times n$ matrix, the $i j$-entry of which is the positive $m^{\text {th }}$ power of the $i j$-entry of the almost Hilbert-Smith matrix:

$$
s_{i j}^{m}=\frac{(i, j)^{m}}{i^{m} j^{m}}
$$

Let m be a positive integer and let $S=\left(s_{i j}\right)$ be the $n \times n$ almost Hilbert-Smith matrix. Define an $n \times n$ matrix S^{m}, the $i j$-entry of which is $s_{i j}^{m}$. Then

$$
s_{i j}^{m}=\frac{(i, j)^{m}}{i^{m} j^{m}}=\sum_{k \mid(i, j)} \frac{J_{m}(k)}{i^{m} j^{m}},
$$

where J_{m} is Jordan's generalization of Euler's totient function [1], given by

$$
J_{m}(k)=\sum_{e \mid k} e^{m} \mu\left(\frac{k}{e}\right) .
$$

Theorem 3: Let $C=\left(c_{i j}\right)$ be an $n \times n$ matrix defined by

$$
c_{i j}= \begin{cases}\frac{\sqrt{J_{m}(j)}}{i^{m}} & \text { if } j \mid i, \\ 0 & \text { otherwise }\end{cases}
$$

Then $S^{m}=C C^{T}$.
Proof: The $i j$-entry in $C C^{T}$ is

$$
\begin{aligned}
\left(C C^{T}\right)_{i j} & =\sum_{k=1}^{n} c_{i k} c_{j k}=\sum_{\substack{k \mid i}} \frac{\sqrt{J_{m}(k)}}{i^{m}} \frac{\sqrt{J_{m}(k)}}{j^{m}} \\
& =\frac{1}{i^{m} j^{m}} \sum_{k \mid(i, j)} J_{m}(k)=\frac{(i, j)^{m}}{i^{m} j^{m}}=s_{i j}^{m} .
\end{aligned}
$$

Corollary 3: The matrix $S^{m}=\left(s_{i j}^{m}\right)$ is positive definite, and hence invertible.
Proof: The matrix $C=\left(c_{i j}\right)$ is a lower triangular matrix and its diagonal is

$$
\left(\frac{\sqrt{J_{m}(1)}}{1^{m}}, \frac{\sqrt{J_{m}(2)}}{2^{m}}, \ldots, \frac{\sqrt{J_{m}(n)}}{n^{m}}\right)
$$

It is clear that

$$
\operatorname{det} C=\frac{1}{(n!)^{m}}\left[J_{m}(1) J_{m}(2) \ldots J_{m}(n)\right]^{1 / 2}
$$

and $J_{m}(i)>0$ for $1 \leq i \leq n$. Since $\operatorname{det} C>0, \operatorname{rank}\left(S^{m}\right)=\operatorname{rank}\left(C C^{T}\right)=\operatorname{rank}(C)=n$. Thus, S^{m} is positive definite.

Corollary 4: If $S^{m}=\left(s_{i j}^{m}\right)$ is the $n \times n$ matrix whose $i j$-entry is $s_{i j}^{m}=\frac{(i, j)^{m}}{i^{m} j^{m}}$, then

$$
\operatorname{det} S^{m}=\frac{1}{(n!)^{2 m}} J_{m}(1) J_{m}(2) \ldots J_{m}(n)
$$

Proof: By Theorem 3, and since the matrix C is a lower triangular matrix, the result is immediate.

Example 2: Consider S^{3}, where S is the 5×5 almost Hilbert-Smith matrix. Then

$$
S^{3}=\left[\begin{array}{ccccc}
1 & \frac{1}{8} & \frac{1}{27} & \frac{1}{64} & \frac{1}{125} \\
\frac{1}{8} & \frac{1}{8} & \frac{1}{216} & \frac{1}{64} & \frac{1}{1000} \\
\frac{1}{27} & \frac{1}{216} & \frac{1}{27} & \frac{1}{1728} & \frac{1}{3375} \\
\frac{1}{64} & \frac{1}{64} & \frac{1}{1728} & \frac{1}{64} & \frac{1}{8000} \\
\frac{1}{125} & \frac{1}{1000} & \frac{1}{3375} & \frac{1}{8000} & \frac{1}{125}
\end{array}\right]
$$

By Corollary 4, we have

$$
\operatorname{det} S^{3}=\frac{1}{(5!)^{6}} J_{3}(1) J_{3}(2) J_{3}(3) J_{3}(4) J_{3}(5)=\frac{19747}{46656000000}
$$

We now define the $n \times n$ matrices $D=\left(d_{i j}\right)$ and $\Omega=\operatorname{diag}\left(\omega_{1}, \omega_{2}, \ldots, \omega_{n}\right)$ by

$$
d_{i j}= \begin{cases}\frac{1}{i^{m}} & \text { if } j \mid i \tag{2}\\ 0 & \text { otherwise }\end{cases}
$$

and $\omega_{j}=J_{m}(j)$. Then the matrix $C=\left(c_{i j}\right)$ can be written as $C=D \Omega^{1 / 2}$. Thus, we have

$$
S^{m}=C C^{T}=\left(D \Omega^{1 / 2}\right)\left(D \Omega^{1 / 2}\right)^{T}=D \Omega D^{T}
$$

Theorem 4: The inverse of the matrix $S^{m}=\left(s_{i j}^{m}\right)$ is the matrix $G=\left(g_{i j}\right)$, where

$$
g_{i j}=i^{m} j^{m} \sum_{\substack{i|k \\ j| k}} \frac{1}{J_{m}(k)} \mu\left(\frac{k}{i}\right) \mu\left(\frac{k}{j}\right)
$$

Proof: Let $D=\left(d_{i j}\right)$ be the matrix defined in (2) and the $n \times n$ matrix $V=\left(v_{i j}\right)$ be defined as follows:

$$
v_{i j}= \begin{cases}j^{m} \mu\left(\frac{i}{j}\right) & \text { if } j \mid i \\ 0 & \text { otherwise }\end{cases}
$$

Calculating the $i j$-entry of the product $D V$ gives

$$
\begin{aligned}
(D V)_{i j} & =\sum_{k=1}^{n} d_{i k} v_{k j}=\sum_{\substack{k|i \\
j| k}} \frac{1}{i^{m}} j^{m} \mu\left(\frac{k}{j}\right) \\
& =\frac{j^{m}}{i^{m}} \sum_{\left.k\right|_{j} ^{i}} \mu(k)= \begin{cases}1 & \text { if } i=j, \\
0 & \text { if } i \neq j .\end{cases}
\end{aligned}
$$

Hence, $V=D^{-1}$. If $\Omega=\operatorname{diag}\left(J_{m}(1), J_{m}(2), \ldots, J_{m}(n)\right)$, then $S^{m}=D \Omega D^{T}$. Therefore, $\left(S^{m}\right)^{-1}=$ $V^{T} \Omega^{-1} V=G=\left(g_{i j}\right)$, where

$$
g_{i j}=\left(V^{T} \Omega^{-1} V\right)_{i j}=\sum_{k=1}^{n} \frac{1}{J_{m}(k)} v_{k i} v_{k j}=i^{m} j^{m} \sum_{\substack{i j k \\ j \mid k}} \frac{1}{J_{m}(k)} \mu\left(\frac{k}{i}\right) \mu\left(\frac{k}{j}\right) .
$$

Example 3: If S^{2} is the 4×4 almost Hilbert-Smith matrix, then

$$
S^{2}=\left[\begin{array}{cccc}
1 & \frac{1}{4} & \frac{1}{9} & \frac{1}{16} \\
\frac{1}{4} & \frac{1}{4} & \frac{1}{36} & \frac{1}{16} \\
\frac{1}{9} & \frac{1}{36} & \frac{1}{9} & \frac{1}{144} \\
\frac{1}{16} & \frac{1}{16} & \frac{1}{144} & \frac{1}{16}
\end{array}\right] .
$$

Moreover

$$
\begin{aligned}
& d_{11}=1 \cdot 1 \cdot\left(\frac{\mu(1) \mu(1)}{J_{2}(1)}+\frac{\mu(2) \mu(2)}{J_{2}(2)}+\frac{\mu(3) \mu(3)}{J_{2}(3)}+\frac{\mu(4) \mu(4)}{J_{2}(4)}\right)=\frac{35}{24}, \\
& d_{12}=1 \cdot 2 \cdot\left(\frac{\mu(2) \mu(1)}{J_{2}(2)}+\frac{\mu(4) \mu(2)}{J_{2}(4)}\right)=-\frac{4}{3}, \quad d_{13}=1 \cdot 3 \cdot \frac{\mu(3) \mu(1)}{J_{2}(3)}=-\frac{9}{8}, \\
& d_{14}=1 \cdot 4 \cdot \frac{\mu(4) \mu(1)}{J_{2}(4)}=0, \quad d_{22}=2 \cdot 2 \cdot\left(\frac{\mu(1) \mu(1)}{J_{2}(2)}+\frac{\mu(2) \mu(2)}{J_{2}(4)}\right)=\frac{20}{3}, \quad d_{23}=0, \\
& d_{24}=2 \cdot 4 \cdot \frac{\mu(2) \mu(1)}{J_{2}(4)}=-\frac{16}{3}, \quad d_{33}=3 \cdot 3 \cdot \frac{\mu(1) \mu(1)}{J_{2}(3)}=\frac{81}{8}, \quad d_{34}=0, \quad d_{44}=4 \cdot 4 \cdot \frac{\mu(1) \mu(1)}{J_{2}(4)}=\frac{64}{3} .
\end{aligned}
$$

Therefore, since $\left(S^{2}\right)^{-1}$ is symmetric, we have

$$
\left(S^{2}\right)^{-1}=\left[\begin{array}{cccc}
\frac{35}{24} & -\frac{4}{3} & -\frac{9}{8} & 0 \\
-\frac{4}{3} & \frac{20}{3} & 0 & -\frac{16}{3} \\
-\frac{9}{8} & 0 & \frac{81}{8} & 0 \\
0 & -\frac{16}{3} & 0 & \frac{64}{3}
\end{array}\right] .
$$

ACKNOWLEDGMENTS

The authors would like to thank Professor C. Cooper and the referee for their interest and for valuable suggestions.

REFERENCES

1. T. M. Apostol. An Introduction to Analytic Number Theory. 1st ed. New York: SpringerVerlag, 1976.
2. S. Beslin. "Reciprocal GCD Matrices and LCM Matrices." The Fibonacci Quarterly 29.3 (1991):271-74.
3. S. Beslin \& N. el-Kassar. "GCD Matrices and Smith's Determinant for a U.F.D." Bulletin Number Theory Related Topics 13 (1989):17-22.
4. S. Beslin \& S. Ligh. "Another Generalization of Smith's Determinant." Bulletin Australian Mathematical Society 40 (1989):413-15.
5. S. Beslin \& S. Ligh. "Greatest Common Divisor Matrices." Linear Algebra and Its Applications 118 (1989):69-76.
6. S. Beslin \& S. Ligh. "GCD-Closed Sets and the Determinants of GCD Matrices." The Fibonacci Quarterly 30.2 (1992):157-60.
7. K. Bourque \& S. Ligh. "On GCD and LCM Matrices." Linear Algebra and Its Applications 174 (1992):65-74.
8. K. Bourque \& S. Ligh. "Matrices Associated with Classes of Arithmetical Functions." Journal of Number Theory 45 (1993):367-76.
9. S. Hong. "On LCM Matrices on GCD-Closed Sets." Southeast Asian Bull. Math. 22 (1998): 381-84.
10. S. Hong. "Lower Bounds for Determinants of Matrices Associated with Classes of Arithmetical Functions." Linear and Multilinear Algebra 45 (1999):349-58.
11. Z. Li. "The Determinants of GCD Matrices." Linear Algebra and Its Applications 134 (1990):137-43.
12. C. R. Wall. "Analogs of Smith's Determinant." The Fibonacci Quarterly 25.4 (1987):343-45.

AMS Classification Numbers: 15A36, 11C20

\% \%

