# **ON THE ALMOST HILBERT-SMITH MATRICES**

### Dursun Tașci

Gazi University, Faculty of Science, Dept. of Math., 06500 Teknikokullar-Ankara, Turkey

### **Ercan** Altinişik

Selçuk University, Akören Ali Riza Ercan Vocational College, 42461 Akören-Konya, Turkey (Submitted July 2000-Final Revision June 2001)

### 1. INTRODUCTION

The study of GCD matrices was initiated by Beslin and Ligh [5]. In that paper the authors investigated GCD matrices in the direction of their structure, determinant, and arithmetic in  $Z_n$ . The determinants of GCD matrices were investigated in [6] and [11]. Furthermore, many other results on GCD matrices were established or conjectured (see [2]-[4], [7]-[10], and [12]).

In this paper we define an  $n \times n$  matrix  $S = (s_{ij})$ , where  $s_{ij} = \frac{(i,j)}{ij}$ , and call S the "almost Hilbert-Smith matrix." In the second section we calculate the determinant and the inverse of the almost Hilbert-Smith matrix. In the last section we consider a generalization of the almost Hilbert-Smith matrix.

## 2. THE STRUCTURE OF THE ALMOST HILBERT-SMITH MATRIX

The  $n \times n$  matrix  $S = (s_{ij})$ , where  $s_{ij} = \frac{(i, j)}{ij}$ , is called the almost Hilbert-Smith matrix. In this section we present a structure theorem and then calculate the value of the determinant of the almost Hilbert-Smith matrix. The following theorem describes the structure of the almost Hilbert-Smith matrix.

**Theorem 1:** Let  $S = (s_{ij})$  be the  $n \times n$  almost Hilbert-Smith matrix. Define the  $n \times n$  matrix  $A = (a_{ij})$  by

$$a_{ij} = \begin{cases} \frac{\sqrt{\phi(j)}}{i} & \text{if } j | i, \\ 0 & \text{otherwise,} \end{cases}$$

where  $\phi$  is Euler's totient function. Then  $S = AA^{T}$ .

**Proof:** The *ij*-entry in  $AA^T$  is

$$(AA^{T})_{ij} = \sum_{k=1}^{n} a_{ik} a_{jk} = \sum_{\substack{k \mid i \\ k \mid j}} \frac{\sqrt{\phi(k)}}{i} \frac{\sqrt{\phi(k)}}{j} = \frac{1}{ij} \sum_{\substack{k \mid (i, j) \\ k \mid (i, j)}} \phi(k) = \frac{(i, j)}{ij} = s_{ij}. \quad \Box$$

Corollary 1: The almost Hilbert-Smith matrix is positive definite, and hence invertible.

**Proof:** The matrix  $A = (a_{ij})$  is a lower triangular matrix and its diagonal is

$$\left(\frac{\sqrt{\phi(1)}}{1},\frac{\sqrt{\phi(2)}}{2},\ldots,\frac{\sqrt{\phi(n)}}{n}\right)$$

It is clear that det  $A = \frac{1}{n!} [\phi(1)\phi(2)\dots\phi(n)]^{1/2}$  and  $\phi(i) > 0$  for  $1 \le i \le n$ . Since det A > 0,  $rank(S) = rank(AA^T) = rank(A) = n$ . Thus, S is positive definite.  $\Box$ 

2002]

339

**Corollary 2:** If S is the  $n \times n$  almost Hilbert-Smith matrix, then

det 
$$S = \frac{1}{(n!)^2} \phi(1) \phi(2) \dots \phi(n).$$

**Proof:** By Theorem 1, and since the matrix A is a lower triangular matrix, the result is immediate.  $\Box$ 

The matrix A in Theorem 1 can be written as  $A = E\Lambda^{1/2}$ , where the  $n \times n$  matrices  $E = (e_{ij})$ and  $\Lambda = diag(\lambda_1, \lambda_2, ..., \lambda_n)$  are given by

$$e_{ij} = \begin{cases} \frac{1}{i} & \text{if } j | i, \\ 0 & \text{otherwise,} \end{cases}$$
(1)

and  $\lambda_j = \phi(j)$ . Thus,  $S = AA^T = (E\Lambda^{1/2})(E\Lambda^{1/2})^T = E\Lambda E^T$ .

**Theorem 2:** Let  $S = (s_{ij})$  be the  $n \times n$  almost Hilbert-Smith matrix. Then the inverse of S is the matrix  $B = (b_{ij})$  such that

$$b_{ij} = ij \sum_{\substack{i|k\\j|k}} \frac{1}{\phi(k)} \mu\left(\frac{k}{i}\right) \mu\left(\frac{k}{j}\right),$$

where  $\mu$  denotes the Möbius function.

**Proof:** Let  $E = (e_{ij})$  be the matrix defined in (1) and the  $n \times n$  matrix  $U = (u_{ij})$  be defined as follows:

$$u_{ij} = \begin{cases} j\mu\left(\frac{i}{j}\right) & \text{if } j \mid i, \\ 0 & \text{otherwise} \end{cases}$$

Calculating the *ij*-entry of the product *EU* gives

$$(EU)_{ij} = \sum_{k=1}^{n} e_{ik} u_{kj} = \sum_{\substack{k \mid i \\ j \mid k}} \frac{1}{i} j \mu \left(\frac{k}{j}\right) = \frac{j}{i} \sum_{\substack{k \mid i \\ j \mid j}} \mu(k) = \begin{cases} 1 & \text{if } i = j, \\ 0 & \text{if } i \neq j. \end{cases}$$

Hence,  $U = E^{-1}$ . If  $\Lambda = diag(\phi(1), \phi(2), \dots, \phi(n))$ , then  $S = E\Lambda E^T$ . Thus,  $S^{-1} = U^T \Lambda^{-1} U = (b_{ij})$ , where

$$b_{ij} = (U^T \Lambda^{-1} U)_{ij} = \sum_{k=1}^n \frac{1}{\phi(k)} u_{ki} u_{kj} = ij \sum_{\substack{i|k\\j|k\\j|k}} \frac{1}{\phi(k)} \mu\left(\frac{k}{i}\right) \mu\left(\frac{k}{j}\right). \quad \Box$$

**Example 1:** Let  $S = (s_{ij})$  be the  $4 \times 4$  almost Hilbert-Smith matrix,

$$S = \begin{bmatrix} 1 & \frac{1}{2} & \frac{1}{3} & \frac{1}{4} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{6} & \frac{1}{4} \\ \frac{1}{3} & \frac{1}{6} & \frac{1}{3} & \frac{1}{12} \\ \frac{1}{4} & \frac{1}{4} & \frac{1}{12} & \frac{1}{4} \end{bmatrix}.$$

By Theorem 2,  $S^{-1} = (b_{ij})$ , where

AUG.

340

$$b_{11} = 1 \cdot 1 \cdot \left(\frac{\mu(1)\mu(1)}{\phi(1)} + \frac{\mu(2)\mu(2)}{\phi(2)} + \frac{\mu(3)\mu(3)}{\phi(3)} + \frac{\mu(4)\mu(4)}{\phi(4)}\right) = \frac{5}{2},$$
  

$$b_{12} = 1 \cdot 2 \cdot \left(\frac{\mu(2)\mu(1)}{\phi(2)} + \frac{\mu(4)\mu(2)}{\phi(4)}\right) = -2, \quad b_{13} = 1 \cdot 3 \cdot \frac{\mu(3)\mu(1)}{\phi(3)} = -\frac{3}{2},$$
  

$$b_{14} = 1 \cdot 4 \cdot \frac{\mu(4)\mu(1)}{\phi(4)} = 0, \quad b_{22} = 2 \cdot 2 \cdot \left(\frac{\mu(1)\mu(1)}{\phi(2)} + \frac{\mu(2)\mu(2)}{\phi(4)}\right) = 6, \quad b_{23} = 0,$$
  

$$b_{24} = 2 \cdot 4 \cdot \frac{\mu(2)\mu(1)}{\phi(4)} = -4, \quad b_{33} = 3 \cdot 3 \cdot \frac{\mu(1)\mu(1)}{\phi(3)} = \frac{9}{2}, \quad b_{34} = 0, \quad b_{44} = 4 \cdot 4 \cdot \frac{\mu(1)\mu(1)}{\phi(4)} = 8.$$

Therefore, since  $S^{-1}$  is symmetric, we have

$$S^{-1} = \begin{bmatrix} \frac{5}{2} & -2 & -\frac{3}{2} & 0\\ -2 & 6 & 0 & -4\\ -\frac{3}{2} & 0 & \frac{9}{2} & 0\\ 0 & -4 & 0 & 8 \end{bmatrix}$$

## 3. GENERALIZATION OF THE ALMOST HILBERT-SMITH MATRIX

In this section we consider an  $n \times n$  matrix, the *ij*-entry of which is the positive  $m^{\text{th}}$  power of the *ij*-entry of the almost Hilbert-Smith matrix:

$$s_{ij}^m = \frac{(i, j)^m}{i^m j^m}.$$

Let *m* be a positive integer and let  $S = (s_{ij})$  be the  $n \times n$  almost Hilbert-Smith matrix. Define an  $n \times n$  matrix  $S^m$ , the *ij*-entry of which is  $s_{ij}^m$ . Then

$$S_{ij}^{m} = \frac{(i, j)^{m}}{i^{m}j^{m}} = \sum_{k|(i, j)} \frac{J_{m}(k)}{i^{m}j^{m}},$$

where  $J_m$  is Jordan's generalization of Euler's totient function [1], given by

$$J_m(k) = \sum_{e|k} e^m \mu\left(\frac{k}{e}\right).$$

**Theorem 3:** Let  $C = (c_{ij})$  be an  $n \times n$  matrix defined by

$$c_{ij} = \begin{cases} \frac{\sqrt{J_m(j)}}{i^m} & \text{if } j | i, \\ 0 & \text{otherwise} \end{cases}$$

Then  $S^m = CC^T$ .

**Proof:** The *ij*-entry in  $CC^T$  is

$$(CC^{T})_{ij} = \sum_{k=1}^{n} c_{ik} c_{jk} = \sum_{\substack{k \mid i \\ k \mid j}} \frac{\sqrt{J_m(k)}}{i^m} \frac{\sqrt{J_m(k)}}{j^m}$$
$$= \frac{1}{i^m j^m} \sum_{k \mid (i, j)} J_m(k) = \frac{(i, j)^m}{i^m j^m} = s_{ij}^m. \quad \Box$$

2002]

**Corollary 3:** The matrix  $S^m = (s_{ij}^m)$  is positive definite, and hence invertible.

**Proof:** The matrix  $C = (c_{ij})$  is a lower triangular matrix and its diagonal is

$$\left(\frac{\sqrt{J_m(1)}}{1^m},\frac{\sqrt{J_m(2)}}{2^m},\ldots,\frac{\sqrt{J_m(n)}}{n^m}\right).$$

It is clear that

$$\det C = \frac{1}{(n!)^m} [J_m(1)J_m(2) \dots J_m(n)]^{1/2}$$

and  $J_m(i) > 0$  for  $1 \le i \le n$ . Since det C > 0,  $rank(S^m) = rank(CC^T) = rank(C) = n$ . Thus,  $S^m$  is positive definite.  $\Box$ 

**Corollary 4:** If  $S^m = (s_{ij}^m)$  is the  $n \times n$  matrix whose *ij*-entry is  $s_{ij}^m = \frac{(i,j)^m}{i^m j^m}$ , then

det 
$$S^m = \frac{1}{(n!)^{2m}} J_m(1) J_m(2) \dots J_m(n)$$

**Proof:** By Theorem 3, and since the matrix C is a lower triangular matrix, the result is immediate.  $\Box$ 

**Example 2:** Consider  $S^3$ , where S is the  $5 \times 5$  almost Hilbert-Smith matrix. Then

$$S^{3} = \begin{bmatrix} 1 & \frac{1}{8} & \frac{1}{27} & \frac{1}{64} & \frac{1}{125} \\ \frac{1}{8} & \frac{1}{8} & \frac{1}{216} & \frac{1}{64} & \frac{1}{1000} \\ \frac{1}{27} & \frac{1}{216} & \frac{1}{27} & \frac{1}{1728} & \frac{1}{3375} \\ \frac{1}{64} & \frac{1}{64} & \frac{1}{1728} & \frac{1}{64} & \frac{1}{8000} \\ \frac{1}{125} & \frac{1}{1000} & \frac{1}{3375} & \frac{1}{8000} & \frac{1}{125} \end{bmatrix}$$

By Corollary 4, we have

$$\det S^3 = \frac{1}{(5!)^6} J_3(1) J_3(2) J_3(3) J_3(4) J_3(5) = \frac{19747}{46656000000}. \quad \Box$$

We now define the  $n \times n$  matrices  $D = (d_{ij})$  and  $\Omega = diag(\omega_1, \omega_2, ..., \omega_n)$  by

$$d_{ij} = \begin{cases} \frac{1}{i^m} & \text{if } j | i, \\ 0 & \text{otherwise,} \end{cases}$$
(2)

and  $\omega_j = J_m(j)$ . Then the matrix  $C = (c_{ij})$  can be written as  $C = D\Omega^{1/2}$ . Thus, we have

$$S^m = CC^T = (D\Omega^{1/2})(D\Omega^{1/2})^T = D\Omega D^T.$$

**Theorem 4:** The inverse of the matrix  $S^m = (s_{ij}^m)$  is the matrix  $G = (g_{ij})$ , where

$$g_{ij} = i^m j^m \sum_{\substack{i|k \\ j|k}} \frac{1}{J_m(k)} \mu\left(\frac{k}{i}\right) \mu\left(\frac{k}{j}\right).$$

**Proof:** Let  $D = (d_{ij})$  be the matrix defined in (2) and the  $n \times n$  matrix  $V = (v_{ij})$  be defined as follows:

[AUG.

342

$$v_{ij} = \begin{cases} j^m \mu \left(\frac{i}{j}\right) & \text{if } j | i, \\ 0 & \text{otherwise.} \end{cases}$$

Calculating the *ij*-entry of the product DV gives

$$(DV)_{ij} = \sum_{k=1}^{n} d_{ik} v_{kj} = \sum_{\substack{k \mid i \\ j \mid k}} \frac{1}{i^m} j^m \mu\left(\frac{k}{j}\right)$$
$$= \frac{j^m}{i^m} \sum_{\substack{k \mid i \\ k}} \mu(k) = \begin{cases} 1 & \text{if } i = j, \\ 0 & \text{if } i \neq j. \end{cases}$$

Hence,  $V = D^{-1}$ . If  $\Omega = diag(J_m(1), J_m(2), ..., J_m(n))$ , then  $S^m = D\Omega D^T$ . Therefore,  $(S^m)^{-1} = V^T \Omega^{-1} V = G = (g_{ij})$ , where

$$g_{ij} = (V^T \Omega^{-1} V)_{ij} = \sum_{k=1}^n \frac{1}{J_m(k)} v_{ki} v_{kj} = i^m j^m \sum_{\substack{i|k \\ j|k}} \frac{1}{J_m(k)} \mu\left(\frac{k}{i}\right) \mu\left(\frac{k}{j}\right). \quad \Box$$

**Example 3:** If  $S^2$  is the  $4 \times 4$  almost Hilbert-Smith matrix, then

$$S^{2} = \begin{bmatrix} 1 & \frac{1}{4} & \frac{1}{9} & \frac{1}{16} \\ \frac{1}{4} & \frac{1}{4} & \frac{1}{36} & \frac{1}{16} \\ \frac{1}{9} & \frac{1}{36} & \frac{1}{9} & \frac{1}{144} \\ \frac{1}{16} & \frac{1}{16} & \frac{1}{144} & \frac{1}{16} \end{bmatrix}.$$

Moreover

$$d_{11} = 1 \cdot 1 \cdot \left(\frac{\mu(1)\mu(1)}{J_2(1)} + \frac{\mu(2)\mu(2)}{J_2(2)} + \frac{\mu(3)\mu(3)}{J_2(3)} + \frac{\mu(4)\mu(4)}{J_2(4)}\right) = \frac{35}{24},$$
  

$$d_{12} = 1 \cdot 2 \cdot \left(\frac{\mu(2)\mu(1)}{J_2(2)} + \frac{\mu(4)\mu(2)}{J_2(4)}\right) = -\frac{4}{3}, \quad d_{13} = 1 \cdot 3 \cdot \frac{\mu(3)\mu(1)}{J_2(3)} = -\frac{9}{8},$$
  

$$d_{14} = 1 \cdot 4 \cdot \frac{\mu(4)\mu(1)}{J_2(4)} = 0, \quad d_{22} = 2 \cdot 2 \cdot \left(\frac{\mu(1)\mu(1)}{J_2(2)} + \frac{\mu(2)\mu(2)}{J_2(4)}\right) = \frac{20}{3}, \quad d_{23} = 0,$$
  

$$d_{24} = 2 \cdot 4 \cdot \frac{\mu(2)\mu(1)}{J_2(4)} = -\frac{16}{3}, \quad d_{33} = 3 \cdot 3 \cdot \frac{\mu(1)\mu(1)}{J_2(3)} = \frac{81}{8}, \quad d_{34} = 0, \quad d_{44} = 4 \cdot 4 \cdot \frac{\mu(1)\mu(1)}{J_2(4)} = \frac{64}{3}.$$

Therefore, since  $(S^2)^{-1}$  is symmetric, we have

$$(S^{2})^{-1} = \begin{bmatrix} \frac{35}{24} & -\frac{4}{3} & -\frac{9}{8} & 0\\ -\frac{4}{3} & \frac{20}{3} & 0 & -\frac{16}{3}\\ -\frac{9}{8} & 0 & \frac{81}{8} & 0\\ 0 & -\frac{16}{3} & 0 & \frac{64}{3} \end{bmatrix}.$$

2002]

### ACKNOWLEDGMENTS

The authors would like to thank Professor C. Cooper and the referee for their interest and for valuable suggestions.

#### REFERENCES

- 1. T. M. Apostol. An Introduction to Analytic Number Theory. 1st ed. New York: Springer-Verlag, 1976.
- 2. S. Beslin. "Reciprocal GCD Matrices and LCM Matrices." *The Fibonacci Quarterly* 29.3 (1991):271-74.
- 3. S. Beslin & N. el-Kassar. "GCD Matrices and Smith's Determinant for a U.F.D." Bulletin Number Theory Related Topics 13 (1989):17-22.
- 4. S. Beslin & S. Ligh. "Another Generalization of Smith's Determinant." Bulletin Australian Mathematical Society 40 (1989):413-15.
- 5. S. Beslin & S. Ligh. "Greatest Common Divisor Matrices." *Linear Algebra and Its Applications* **118** (1989):69-76.
- 6. S. Beslin & S. Ligh. "GCD-Closed Sets and the Determinants of GCD Matrices." *The Fibo*nacci Quarterly **30.2** (1992):157-60.
- 7. K. Bourque & S. Ligh. "On GCD and LCM Matrices." *Linear Algebra and Its Applications* 174 (1992):65-74.
- 8. K. Bourque & S. Ligh. "Matrices Associated with Classes of Arithmetical Functions." Journal of Number Theory 45 (1993):367-76.
- 9. S. Hong. "On LCM Matrices on GCD-Closed Sets." Southeast Asian Bull. Math. 22 (1998): 381-84.
- 10. S. Hong. "Lower Bounds for Determinants of Matrices Associated with Classes of Arithmetical Functions." *Linear and Multilinear Algebra* **45** (1999):349-58.
- 11. Z. Li. "The Determinants of GCD Matrices." *Linear Algebra and Its Applications* 134 (1990):137-43.
- 12. C. R. Wall. "Analogs of Smith's Determinant." The Fibonacci Quarterly 25.4 (1987):343-45.

AMS Classification Numbers: 15A36, 11C20