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L INTRODUCTION 

For a e C\ {1} we write, as in [2], 
1 •v °° *n 

e'-a % "V 'nV 

from which it follows that En(d) (n = 0,1,...) are uniquely determined by 

H0(a)ml, Hn(a) = ^zfyHk(a) (n>l). (1) 

TheEulerian polynomials Rtl(a) (« = 0,1,...) are defined by Rn{a)-{a-VfHn{a) asEuler first 
discussed them in [4]. For n > 1, as is easily seen from (1), Rn(a) is a polynomial in a of degree 
n-\ with integer coefficients and was expressed by Euler in [4] as 

*„(«) = 14"«*_1, (2) 
k=l 

where the integers A\ (\<k <n) are known as Eulerian numbers (see also [3, p. 51]). Later, 
Frobenius [5] gave another expression for Rn(a) as 

R„(a) = fjk\S"k{a-\rk, (3) 

where S% (1 < k < n) denote the Stirling numbers of the second kind (see also [3, p. 244]). 
The object of this paper is to obtain one more expression for R„(a) in terms of an array of 

integers Q! closely related to the central factorial numbers (see [6, §6.5]). By means of the new 
expression for R^ia), we derive explicit formulas for Bernoulli and Euler numbers and others, and 
unify some known results, in terms of these C£. 

2. A NEW EXPRESSION FOR Rn(a) 

We define an array of integers Q in the following way: for integers r, k>l, 

Q = | * 6 V~J' (4) 
[kClr-1 i£n = 2r. 

Clearly, Cfr"1 = Q2r = 1. We make the convention that Q2""1 = C0
2r - 0. 
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These integers C% are closely related to the central factorial numbers of the second kind 
T(n, k) defined as in [6, p. 212]. Indeed, for r,k > 1, Cf~l = (2k-\)\ T(2r, 2k). Thus, it follows 
from the properties of T(2r, 2k) (see also [1, pp. 428-29]) that 

,,,_,_ f(2r-l)! ifk = r, 
cr=V ... (5) 

Moreover, the second formula in the definition (4) together with 

Cri=2{2k-\)Cll+kClr (6) 

gives the recurrence for Q . We may also derive (5) and (6) directly from the definition. 
The new expression of R„(a) given below contains the powers of a as in (2) and also that of 

a-I as in (3). Moreover, the number of the terms in the summation is about half of that in (2) 
and (3). 

Theorem 1: For an integer r > 1: 

*2,-i(«) = £c2rla«-Xa - l ) 2 - 2 * , (7) 

R2r(a) = (1 + a)£ Clrak~\a - i)2r~2k. (8) 

Proof: Clearly, from (1), Ri(a) = 1 and R2(a) = 1 + a. For the general case, the proof is by 
induction on r > 1 using the recurrence 

^ i ( « ) = (" + l)aRn(a)+0 - a)^(aRn(a)) (9) 

for n > 1 (see [2], [5]). If (7) is true, then by (9), 

i?2r(a) = (2r)ai^r.1(a) + ( l - a ) ^ ( a ^ r „ 1 ( a ) ) 

= X kC2
k
r~\l + a)ak~l(a - l)2r"2*, 

which by (4) equals the right-hand side of (8). If (8) is true, then by (9) again, 

i?2r+i(a0 = (2r + l)aR2r(a) + (1 - a ) ^ ( a / k ( a ) ) 

= S c f {2«(2^ +1) + *(« -!)2} a*~V " !)2r"U 

= Q2r (a - l)2r + C2r2(2r + l)ar + £ {2(2Jfc -1) C ^ + kC2
k
r}ak~\a - \fr~2k*\ 

which by (5) and (6) equals the right-hand side of (7) with r replaced by r +1. This completes the 
proof of the theorem. 

Some classical formulas involving the Eulerian numbers have their counterparts in the integers 
eg. Analogous to an identity of Worpitzky (see [3, p. 243]), we have the following theorem. 
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Theorem 2: For an integer r > 1: 

x2r-l _ y Qlr-\ (x + k-l 
k=\ 

2Jfc-l r (10) 

Proof: Let A be the difference operator defined by A/(x) = /(JC + 1 ) - / ( * ) . Following an 
idea of Frobenius in [5], we have by a property of S" (see [3, p. 207]) and (3) 

Thus, by (7), 

^=±^'^;(5)=x^'^; A—-Q=^<z+A)(J 

^ i = £ cr \i+A)*-^2* (2/_ j)=s Q 
jfe=i 

2r-l f X + A - 1 
* 2Jfc-l *=i 

In connection with the Bernoulli polynomials Bn(x) and the Bernoulli numbers Bn = Bn(0) 
analogous to 

we have the following theorem. 

Theorem 3: For an integer r > 1: 
1 {BM-B2r}=icr(x+

2
k

k-l\ 2r k=\ 

^ ^ W ^ - O Z a F u ^ ^ - 1 } 

( i i ) 

(12) 

Proof: Since both sides of (11) are polynomials in x, it suffices to assume that x equals an 
integer m>l. Then it follows from (10) using formulas in [3, pp. 10 and 155] that 

Similarly, 

UBlr(m)-B2r}=mf/-=£ e r f (kuj:A=t cH m+
2
k
k-1) 

-^2r" 
m-l 

k=l j=l 

'k+J-?\Jk+J 
2k + 2* 

= ZQ 
fc=l 

+ i ~ l ^ , fm + k 
2^ + 1 

i n - + 2^ + 9] 
'C ,2r2/ff-lfflf + &-l 

i f c = l 2* + l l 2^ 

As a simple and interesting consequence of Theorem 3, we derive some explicit formulas for 
Bernoulli numbers which may be compared with those in Theorems 5 and 6 below. 
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Theorem 4: For an integer r > 1: 
B-'iyf"%^cr- <i3) 

Proof: We obtain (13) by differentiating both sides of (12) and then evaluating at x = 0. 
Moreover, we have, by (6), 

= t(-1)" kntlZ2&k + 1)(2it +1}-k{2k + 3)}C '̂ 
from which (14) follows. 

From the proof of Theorem 3 we have, in particular, 

Z ,-2r-l _ V ^'2r~1 f W + * 

l^^g^W 
(IS) 

We refer to [7] in which (13) and (15) have been given. 

3. BERNOULLI AND EULER NUMBERS 

We recall that 
j2r oo ,2r-l 

s e c ^ X H ) ' ^ — , t a n ' = I X - r ( 2 r _ 1 ) r 

where E2r are known as the Euler numbers and T2r_x as the tangent numbers. The Bernoulli num-
bers can be obtained by 

Since 
2eu .e2it-l , „ .^TT,^(it)n 

where i = -J-l, it follows that, for r > 1, 
E2r = (l+i)H2r(i), (16) 

^ - i = ( - i ) r 0 -0^ 2 r - i (0 - (17) 
Moreover, it is easy to verify that 

T^X=(-iji^H^i-i)=(-lr^iC-i). (m 
See also [2, p. 257] and [3, p. 259]. 
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Theorem 5: For an Integer r > 1: 

jt=i z 

r 

and 

it=l Z 

T2r+l = t(-iy-k2»-2k+ic?. 

Proof: We have, by (7) and (17), 

^-i-c-o^xcr1-^ 
w ( ' -1 ) U ' 

from whiich (19) follows. Moreover, we have, by (6), 

^+i = Z(-i)r"^i{2(2^-i)Q2:1+Acf} 
*=i z 

= Z(-ir*i{2(2* + l)-2*)C?, 
J k = l z 

from which (21) follows. We obtain (20) and (22) similarly using (18) Instead. 

Theorem 6: For an Integer r > 1: 
r | 

k=l Z 

Proof: We have, by (8) and (16), 

^--ZHr*2^'1^. 

J f c = l 

2r _ L _ _ _ 
* ( l - l ) 2 * ' 

from which (23) follows. Moreover, we have, by (6), 
r+l . » 

3™ = K-if^r^^-i^i+^cf} 
*=1 Z 

J f c = l Z 

from which (24) follows. 

The formulas (21) and (23) can be found In [3, p. 259] where no proofs are 
to [1, pp. 479-80] for other explicit formulas for Tlr^ and E2r. 
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