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1. INTRODUCTION
For a € C\ {1} we write, as in [2],

1
&

a2 I
from which it follows that H (o) (n=0,1,...) are uniquely determined by
1 n—1
Hye)=1, Hfa)= mz (Z)Hk(a) n=0). )
k=0

The Eulerian polynomials R (@) (n=0,1,...) are defined by R (a)=(a-1)"H, (o) as Euler first
discussed them in [4]. For n>1, as is easily seen from (1), R (a) is a polynomial in o of degree
n—1 with integer coefficients and was expressed by Euler in [4] as

R(a)=Y dja*", @)
k=1

where the integers A7 (1<k <n) are known as Eulerian numbers (see also [3, p. 51]). Later,
Frobenius [5] gave another expression for R (&) as

R ()= ik!S};’(a—l nk 3)
k=1

where S} (1<% <n) denote the Stirling numbers of the second kind (see also [3, p. 244]).

The object of this paper is to obtain one more expression for R (&) in terms of an array of
integers C} closely related to the central factorial numbers (see [6, §6.5]). By means of the new
expression for R (a), we derive explicit formulas for Bernoulli and Euler numbers and others, and
unify some known results, in terms of these Cj .

2. ANEW EXPRESSION FOR R, (a)
We define an array of integers C} in the following way: for integers r, £ 21,
1< i 2k Y. .
VAN 7 =% —
Cre k%( ) (k~])J ifn=2r-1,
kCH! if n="2r.

Clearly, C¥ = C¥ =1. We make the convention that CZ1 = CZ" =0.

“)
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These integers C; are closely related to the central factorial numbers of the second kind
T(n, k) defined as in [6, p. 212]. Indeed, for r,k > 1, C¥'= (2k -1)! T(2r, 2k). Thus, it follows
from the properties of 7(2r, 2k) (see also [1, pp. 428-29]) that

4 |@r-DV ifk=r,
C2r 1_ 5
g {o ifk>r+1 ©)
Moreover, the second formula in the definition (4) together with
CF' =202k -1)C¥, +kC¥ ©6)

gives the recurrence for C;. We may also derive (5) and (6) directly from the definition.

The new expression of R, (a) given below contains the powers of « as in (2) and also that of
a—1 as in (3). Moreover, the number of the terms in the summation is about half of that in (2)
and (3).

Theorem 1: For an integer r > 1:

Ropi(@) = . CE e (a - 2, )
k=1
Ry, (a)=(1+ a)z C z'ak_l(a — D)2, ®
k=1

Proof: Clearly, from (1), Ri(a) =1 and R,(a) =1+a. For the general case, the proof is by
induction on r > 1 using the recurrence

Ryui(@) = (14 DR, @)+ (1- @) S (R (@) ©
for n>1 (see [2], [5]). If (7) is true, then by (9),
R, (@)= @r)aR, (@) +(1- @) 2 (aR,, ()
= Y RCH 1+ @)k @ — 1,
which by (4) equals the right-handks_i:ie of (8). If (8) is true, then by (9) again,
Riyp(@) = @r + Dy, (@) +(1- @) ok, (@)

=Y C¥F{2a@k+D)+k(a-1*}a* (a-1)""*
k=1
=C¥(a-1)" +C¥2Q2r +)a’+ Y {22k - ) C¥ +kCI}a* (@ - )P -2+,
k=2

which by (5) and (6) equals the right-hand side of (7) with r replaced by r +1. This completes the
proof of the theorem.

Some classical formulas involving the Eulerian numbers have their counterparts in the integers
C}. Analogous to an identity of Worpitzky (see [3, p. 243]), we have the following theorem.
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Theorem 2: For an integer r > 1:
2r— ar-1{x+k—1
ZC " ( b1 ) (10)

Proof: Let A be the difference operator defined by Af (x) = f(x+1)— f(x). Following an
idea of Frobenius in [5], we have by a property of § 7 (see [3, p. 207]) and (3)

z"j 'S"() Zn:j!Sj’.’A"‘f(”;)an(I+A)C;).

=

r—1 _ z r— —1 A2r— X 1{x+k-1
x2 I_ZCI? 1(1+A)k 1A2 2k(2r-1) ZCZ 1( Pyl 1)

k=1

Thus, by (7),

In connection with the Bernoulli polynomials B,(x) and the Bernoulli numbers B, = B,(0)
analogous to

1 n—-1 - __1
S BBy =5 4 (7))
Jj=

we have the following theorem.

Theorem 3: For an integer r > 1:

BB} =3 G (), an
2r k—
FriPra@=Ce-d 3 Slack (V) (12)

Proof: Since both sides of (11) are polynomials in x, it suffices to assume that x equals an
integer m>1. Then it follows from (10) using formulas in [3, pp. 10 and 155] that

1 o - k+j-1 - k-1
Li,m-81-3 =3 ‘Z(Zkf_l) > ("5

j=1 k=1
Similarly,

m-1 r m-1
. rJ(k+j
2r+1 Byrlm) = ZJZ ZC,ﬁ & ?( 2k—1)

J=1

Lo (k+j-1) (k+]j
S5 [ ()
=] Jj=1
v | (mt k-1, (m+k
"ZIC [( 2% +1 )*(2k+1)]
:£C2,2m l(m+k—1)

ok ap+1\ 2k )

As a simple and interesting consequence of Theorem 3, we derive some explicit formulas for
Bernoulli numbers which may be compared with those in Theorems 5 and 6 below.
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Theorem 4: For an integer 7 > 1:

a(k l'k'
5= Yy ey, (3)
k
By = 2R ) o (14)

Proof: We obtain (13) by differentiating both sides of (12) and then evaluating at x =0.
Moreover, we have, by (6),

Bzr+2—kzl( - -1 2k 2;;'k{2(2k NCF, +kCF}

- kg(—l)" %2{(k £ )2k +1) - k(2K +3)}C7,

from which (14) follows.
From the proof of Theorem 3 we have, in particular,

ijzm Zczr 1(m+k)

m 2r 2r m+k
Z] —(2m+1)z2k+]C (Zk)

Jj=1

(15)

We refer to [7] in which (13) and (15) have been given.

3. BERNOULLI AND EULER NUMBERS

We recall that
t2r—1

_ 0 , t2r
sect—go( 1) EZ’_(Zr)!’ tant = ZE"‘(Zr o

where E,, are known as the Euler numbers and 7,,_; as the tangent numbers. The Bernoulli num-
bers can be obtained by

=y

4'(4' 1) B
Since ’
sect+’tant=e;‘:teirIrl '22' —1+(1+1)ZH(1)(”)
where i = +/—1, it follows that, for 7 > 1,
E,, = (1+)H,, (), (16)
By = (1 (1= Hy, (). (17)

Moreover, it is easy to verify that
By = (“1)r22r—1H2r—1(_1) = (—1)"1R2,_1(—1). (18)
See also [2, p. 257] and [3, p. 259].
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Theorem 5: For an integer r > 1

kgl l)r—k 2k — 2r-1’ (19)
- Z’: 1y k-2 C2r-L, (20)
and .
= kg(— 1+ ’; i Vor 8 @D
T, = i (__1)r-k22r—2k+lclfr' (22)
k=1

Proof: We have, by (7) and (17),

k
2r l_( 1)r22 2r— )2k’

from which (19) follows. Moreover, we have, by (6),

r+l

7;,+1=Z(—1)""“ —{2Qk-)CE +kCZ}
k=1

r

=3 1y * L@k +1)-2k3C?,
k=1 2
from which (21) follows. We obtain (20) and (22) similarly using (18) instead.

Theorem 6: For an integer r > 1:

kz (—1)'c 2k- (23)
& K43k +1 4
By =2 (-1 1——-—2k_1 Ct. (24)
k=1

Proof: We have, by (8) and (16),

Z i )2k 4

from which (23) follows. Moreover, we have, by (6),

r+l

Eyin= Z( l)k 1{2(2" 1)C 1+kC1?r}

k=1
r _ 1 ,
=Y (-D* ‘-—zk_l {(k+D(2k+1)-k2}CF,
k=1
from which (24) follows.

The formulas (21) and (23) can be found in [3, p. 259] where no proofs are given. We refer
to [1, pp. 479-80] for other explicit formulas for 7,,_; and E,, .
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