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1. INIRODUCTION AND RESULTS

The set IT” of all permutations of (1,2, ..., n), i.e., of all one-to-one mappings 7 from N =
{1,2,...,n} onto &V, can be made to a metric space by defining

|7z =7"|| = max {|x(@) — z'()|: 1<i <m}.

This space has been studied by Lagrange [1] with emphasis on the number of points contained in a
sphere with radius & around the identity, i.e.,

ol ny=|{r cIl":|x()—i| <k, 1<i<n}|

where | A| denotes the cardinality of the set 4.

These numbers have been calculated in [1] for £ €{1,2,3} and all » €N, the set of positive
integers. For k =1, it is fairly easy to show that p(I,n—-1), neN, ¢(I; 0) =1, is the sequence of
Fibonacci numbers. For & =2 and k =3, the enumeration is based on quite involved recurrences.
The corresponding sequences are listed in Sloane and Puffle [4] as series M1600 and M1671,
respectively.

The main purpose of this note is to supplement these findings by providing a closed formula
for p(k;n) when k+2<n<2k+2. Note that, for n<k+1, one obviously has ¢(k; n)=n!;
thus, the cases # > 2k +3, k >4, remain unresolved.

As a by-product, we obtain a formula for the permanent of specially patterned (0, 1)-matrices.
The connection to the problem above is as follows: Let n, £ €N, £ <n-1, be fixed, and for
ieN,B={jeZ:i-k<j<i+k}n N, where Z is the set of all integers.

Then @(k; n) is the same as the number of systems of distinct representatives for the set
{B, B,, ..., B,}. Defining now fori, je N

one has, for the permanent of the matrix 4 = (g;) (cf. Minc [2], p. 31),
Per(A) = p(k; n). (1.H

Remark: The recurrence formula for ¢(2; n) has also been derived by Minc using properties of
permanents (see [2], p. 49, Exercise 16).

, jeB,
0, jeB,

The matrix 4 defined in this way is symmetric and has, when £ +2<n <2k +2, the block
structure

£
. g iV’n)(i?ﬁ ivmxx Amxm
A = 1;?(73" ESX.S' Es‘xm 3 (32)
‘\Amxm me.&‘ mem
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where m=n-1-k, s=2k+2-n, 1,,, is the a xb-matrix with all elements equal to one and
A, is the mx m-matrix with zeros on and above the diagonal and ones under the diagonal. For
n=2k +2, the second row and column blocks cancel. The matrix A,,, has been studied by
Riordan ([3], p. 211 ff)) in connection with the rook problem. Riordan proved that the numbers
of ways to put r non-attacking rooks on a triangular chessboard are given by the Stirling number
of the second kind. This will be crucial for the calculation of ¢ (k; #) and of Per(4) for matrices 4
of a slightly more general structure than that given in (1.2). The results we will prove in Section 2
are as follows: Let S, denote the Stirling numbers of the second kind, i.e., the number of ways to
partition an n-set into » nonempty subsets.

Theorem 1: Let k,neN, k+2<n<2k+2 m=n-k—-1. Then

ok m) = 3 (Y™ (n—2m+ )\~ 2m-+ )" ST,

r=0

Furthermore, let the matrix 4, be defined as

' Lnyxm  Lmymy B
AA = 1m3xm1 1m3><m3 1m3><m2 > (13)
A 1 1

myxmy Smyxmy Sy xm
where neN, n=m +m, +m;, m eN_{0}, 1<i<3, A,

ing row and column blocks cancel.

Theorem 2: Let A, be defined by (1.3). Then

. as above; for m = 0, the correspond-

Per(4y) = 3. (1) (my + ) \(m + 7Y™ ST,

r=0
Remarks:

(a) Since the permanent is invariant with respect to transposing a matrix and to multiplication by
permutation matrices, 4, as given in (1.3) is only a representative of a set of matrices for which
Theorem 2 holds. In particular, it follows that, for all m, m,, m; € N {0},

S ) g )y + Y S = S 1y () + Y ST
r=0 r=0

Specializing further one gets, for m, =0, my =1, m, +1=m, the well-known relation
1=) (-D)™"risr.
r=1

(b) Since the matrix A given in (1.2) is a special case of the matrix 4,, in view of (1.1), Theorem
1 is a special case of Theorem 2. Therefore, we have to prove only Theorem 2.

2. PROOFS

By a suitable identification of the rook problem discussed in Riordan [3], chapters 7 and 8,
with the problem considered here, part of the proof of Theorem 2 could be derived from results in
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[3]. In view of a certain consistence of the complete proof, we prefer however to develop the
necessary details from the beginning.

The problem of determining ¢ (k; n) can be seen as a problem of finding the cardinality of an
intersection of unions of sets. We will do this by applying the principle of inclusion and exclusion
to its complement. Therefore, the sets I, ={z e II": 7() = j}, i,j e N={1,2, .., n} are rele-
vant. Let @, (J) for J< N denote the set of all 7 = J with |[I| =k and % the set of all £-tuples
in N* with pairwise different components. For k,neN, k<n, (i,i,,...,5,) eNEAN¥, and
J, € N, 1<v <k, one obviously has

ﬂﬂm

Therefore, one gets from the principle of inclusion and exclusion that, for k,neN, k<n, Jc N
with |J|=k,and B,cN,ieJ,

U UIT;

iel jeB;

For the sets on the right-hand side of (2.1), it holds that

(G 3 €N €B Y, e D= o

{(n B Gy, gy g €NE)

otherwise.

k
=Xy m-0 Y |{Gn-n i) eNLj eB Viel}| @1
r=1 IeP.(J)

({= ell": z(i) e B}|. (2.2)

ie

k)!
ForneN, k eN_{0}, k<n, B,B,,...,B,C N, let
Y {Us-od) eNEjieB Viesy| forkzl,

RI:’(BD ey n) - Jeg"(N) (23)
1 fork=0.

ed

[If one considers a chessboard on which pieces may be placed only on positions (7, j) for which
j €B,, then R}(B,, ..., B,) is the number of ways of putting k£ non-attacking rooks on this board. ]

Lemma 1: Let k,neN, j<n, B.c N fori e N. Then it holds that

k
> U Uyl =S cr-te-n(i )R, 8)

JeP (N)|ie] jeB;

Proof: With the help of (2.1), one gets

U um;

JePy(N) |ied jebB;
k

=YY m-nt Y Y (G- ) eNLijeB Viel}
r=1 JeP (N) 1eP L)

k
=X Y- Y (G- J) €N €B Vi e}||[{J e P(V) I c J}
r=1 Te®{N)

k
= g (=1 - r)!(Z :Z)R,"(Bl, ..,B). O
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In the next lemma it is shown how the numbers R;(B,, ..., B,) are related to R;'(B{,..., BS),
where B denotes the complement of B, w.r.t. N. (In terms of the rook problem, one thus con-
siders the complement of the chessboard.) The lemma is equivalent to Theorem 2 in Riordan ([3],
p. 180).

Lemma 2: Let k,neN, k<n, B,c N,ie N. Then it holds that

RI!(B,..,B)= f(—l)'(k ~r)!(Zj;)(Zj;)R;'(Bf, .., BY).

r=0

Proof: By (2.2) and (2.3), one has

(n-—k)!R]?(B"":Bn): Z

ﬂ{ﬂ ell”: (i) eBi}'

JeP (N) |ie]
= ¥ [m-|U Uml|
JeP(N) iel jeBf

The assertion then follows with the help of Lemma 1. O

Lemma 2 will become useful for calculating Per(4,) in the following manner: Let 4, = (a;)
and put B,={j € N:a; =1}. Since by (2.2) and (2.3)

Per(4,) = Z Hai,fr(i)z

zell” i=1

{ﬂ' ell”: I}ai,ﬂ(i) = IH =R;(B,,...,B,),
one obtains from Lemma 2 that
Per(4,) = Z(——l)’(n—r)!R,"(Bf, v BY). 2.4
r=0

The matrix corresponding to Bf, ..., B¢ is 4, =1,,, — A4, which is easier to handle because it has
mainly blocks of zero-matrices. A further simplification is obtained by considering instead of 4,
the matrix

n Aml xm 9’”1 xn O"'l""‘s
AA = Omz xmy Amgxml Omzxm3 H (25)
0'”3""'1 O'”s"mz O”'s"'”s

where A, =1,,,~ AL - A, is obtained from 4, by suitable permutations of rows and columns.
By Remark (a) one has Per(4,) = Per(/fA).

Now we turn to the special structure related to the matrices of the form Amxm, that is, we
consider B ={1,2,...,i},i € N, ={1,2,...,m}. One can easily show by induction on & that

k
| s i) eNE2j, €D, 1<v < kY| =T T(ID, k1-v)
v=1
ifk,meN, k<m,and D,,...,D, c N,, such that D, c D,;, 1< v <k, so that

k
R'B,...B)= Y  TlG+1-v. 2.6)

1) < ++<ipSm  v=1
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We denote the right-hand side of (2.6) by a, 1<k <m, af =1, af =0, for k <0 or k >m.

Lemma 3: For o} defined as above, it holds that
@ af=af ' +(m+1-k)al foralkeZ meN, m>2.
B of =8, forallmeN, k eN_{0}, k<m.
Proof: Part (a) follows immediately from the definition of a}'. Assertion (b) obviously holds

true for m=1. Since the Stirling numbers of the second kind satisfy the recursion S7" = ™! +
kST, the assertion is a consequence of (a). O

It now follows from Lemma 3 and (2.6) that, for B, ={1,2,...,7}, 1<i<m,

S, forallmeN k eN_{0}, k <m,

2.7
0, otherwise. @7

R,Q"(Bl,...,Bm)z{

To deal with the two A -blocks of the matrix 4,, the following lemma is helpful.

Lemma 4: Let m, m,, neN, n>m +m,, and C,,C,, ..., C, € N such that:

(@ Cc{l,2,. ,m}, 1<i<m;

B Ccim+l,. . m+m}, m+1<i<m+m),

© C=0 m+m+1<i<n.

Furthermore, let D, = {j €{l,...,m,}: j+m €C,,, }, 1<i <m,. Then it holds that

k
R™(C,....,C,)R™ (D,,...,D,), 0<k<m+m,
R,:'(Cl,...,cn)= ygo v(l ) k ( mz) W Ty

0 m+m+1<k<n.

Proof: Let Ny={L,...,m}, N, ={m+1,...,m+m}, Ny={m+m+1,. ¢} and, for J e
P(N), fi(D) =|{(j1,...,jk) eNkt:j eC Vied} I Since C, =0 for i € N3, one has f,(J)=0 if
Je®P,(N) and JN;#0. This implies

k
R(C,...CH=D, 2, P A ACHA)

r=0 J,&®,(Ny) J,eP_.(N,)

Since (.UN G L}V C;) = 0 one has, for J, € P,(N)), J, € P,_,(N,), that
ieN, ieN,

S oI = {Usr o> 7) €N, i €G Vi € B [{Urnns - i) €NET 2 €C Wi €}
The assertion then follows from

RM(CphosCp)= Y |{Ui-n i) eNL:1j €C Vie S}
J1€P,.(Ny)
and

R2(Dy.sD)= Y Ui eNET1jeGVies}| O
J&Pp_ (N

Finally, the following identity will become useful:
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i(—l)’(n—r)!S,’,’,‘I}_, =(n-m)l(n—m)" for m,n eN_{0}, n>m.
=0

(2.8)

Identity (2.8) can easily be proved by induction on m using the recurrence formula for the Stirling

numbers. Now we are ready to prove Theorem 2.
(2.5). Putting

Consider the matrix A, =(4,) defined in

...}, 1<i<m,
C=qm+1,..,m+i-m}, m+1<i<m+m,,
0, m+m,+1<i<n,

one has d;; =1 if and only if j € ;. Note that for C,,..., C, the assumptions of Lemma 4 are sat-
isfied and that D, ={1,...,i} for 1<i<m,. Put n—m—m,=m;. Then, from (2.4), Lemma 4,
(2.7), and (2.8), one gets that

Per(d,) = io(— 1Y (n-r)!R"(C, ..., C,)

my+my r

=Y )Y @-rY RMG, ... Co) R/(D,y ., D)
r=0 v=0
my+my r my+m;

) +my my+my
= 2 G m=-NY S S = 2 Satiey 2 G (=S,
r=0 v=0 v=0 r=v

my+l-r+v

my my m
=2 Sty 2N m=r =S = 3 (C) S, (- v —my) (n— v —m,)™
v=0 v=0

r=0

m

v=0

= f“(—l)"’l“’(m3 +V)(my + V)" St

v=0
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