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1. INTRODUCTION 

There exists a very wide literature about the generalized Fibonacci sequences (see, e.g., [3], 
where interesting applications to number theory are also shown, and [2], where such sequences 
are treated as a particular case of a more general class of sequences of numbers). In this paper we 
start by defining some particular generalized Fibonacci sequences (denoted by {Un(c-l,-c)}neN, 
c GN) and by studying their properties. In particular, we find interesting relations between a 
generic term Un(c-l,-c), n GN, and Un+l(c-l,-c) and show a nice connection between the 
numbers Un(c~ 1, -c) and their expression in the c-ary enumeration system. After this, we give 
an estimate of the value of the logarithm of Un(c - 1 , - c) on the basis c. 

Successively, we. apply the properties of the sequences {Un(c-l,-c)}neN to the study of the 
number of solutions of linear equations in Zr, r e N. 

Finally, we briefly show the principal characteristics of another class of generalized Fibonacci 
sequences, {t/„(c + l,c)}weN, c eN\{l}. 

2. GENERALIZED FIBONACCI SEQUENCES: THE SEQUENCES {Un(c -1, - c)}neN 

For each pair (hy k), h,k e C of complex numbers such that k(h2 -4k) ^ 0, we denote by 
{Un(h, k)}neN the generalized Fibonacci sequence defined as follows: 

V/i e IH n > 2, Un(h, k) = hUn_x{K k) - kUn_2(h, k% U0(h, k) = 0, Ux(h, k) = I 

An explicit expression of the 72th term of {Un(h, k)}neN for generic « G N U { 0 } is given by 
the Binet formula 

where 
h + ̂ h2-4k A Q h-4h2-4k 

2 r 2 
are the distinct roots of the polynomial x2 -hx + k e C[x], called the characteristic polynomial of 
the sequence. Moreover, for every integer « e N u { 0 } , w e have 

a-p P a-p a-p ' 

We then obtain 

V « ^ u { 0 } , aUn(hyk)+P" = Un+l(h,k). (1) 
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As the role played by a and /? in the Binet formulas is symmetric, the following equalities are 
also true: 

V » e N u { 0 } , /3U„(h,k) + a" = Un+1(h,k). (2) 

As a particular case, let us consider now the generalized Fibonacci sequences of the form 
{U„(c-1, -c)}„eN> o being a positive integer; from the equalities h = c-1 and k = -c, we easily 
obtain a = c and /? = - 1 . Then, for all n e N u {0}, from the Binet formula we have 

U„(c-l,-c) = - • ( - ! ) " 

c + 1 ' 
while equalities (1) and (2) show, respectively, that 

VweN ^{0}, U„+l(c-l,-c) = cUn(c-l,-c) + (-iy, 
and 

V « e N u { 0 } , u„(c-l,-c) + U„+l(c-l,-c) = c". 

(3) 

(4) 

The first terms of some of such generalized Fibonacci sequences, corresponding to fixed values of 
c, are: 

: 0,1,0,1,0,1,0,1,0,1,0,1,...; {f/„(0,-l)}„6 
{Un(l,-2)}ne 

{t/„(2,-3)}„€ 
{[/„(3,-4)}„€ 
{t/„(5,-6)}„e 

0,1 
0,1 

0,1 
0,1 

1,3,5,11,21,43,85,171,341,683,...; 

2,7,20,61,182,547,1640,4921,...; 

3,13,51,205,819,3277,13107,52429,. 

5,31,185,1111, 6665,39991,239945,... 

3. {Un(c - 1 , - c)}neN (c > 2) IN THE c-ARY ENUMERATION SYSTEM 

Theorem: Let c > 2 be a fixed integer; then, for each fixed integer nt>2, the two following 
assertions are equivalent: 
(a) 3neN:m = U„(c-l,-c); 
(h) in the c-ary enumeration system, the expression of m is either of the form 

( c - l)0(c-1) ...0(c-1) or of the form ( c - l)0(c-1)... 0(c-1)1. 
Moreover, when for a given m the two assertions are satisfied, we have m = U.+l(c - 1 , - c), where 
t denotes the number of digits of m which appear when it is written in the c-ary enumeration 
system. 

The theorem can be proven by noticing that, for every n eN KJ {0}, we have the recursion 
U„+l(c-l,-c) = cUn(c-l,-c) + (-\y. Hence, if (a) is satisfied, assertion (b) straightforwardly 
follows by induction from the first few terms: 

U2(c-l,-c) = c-l-l = c-l; 
tf3(c-l,-c) = c-(c-l) + l = 10-(c-l) + l = (c-1)0 + 1 = (c - l ) l ; 
^ ( c - l , - c ) = c - t / 3 ( c - l , - c ) - l = 10-[(c- l ) l ] - l = ( c - l ) 1 0 - l 

= (c- l )0(c- l ) ; 
U5(c-1, - c ) = c-U4(c-l, -c) + 1 = 10-[(c- l)0(c-1)] +1 

= (c - l)0(c -1)0 +1 = (c - l)0(c -1)1; 
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t/6(c-l,-c) = c-£/5(c-l,-c)-l = 10-[(c-l)0(c-l)l]-l 
= (c - l)0(c -1)10 - 1 = (c - l)0(c - l)0(c -1). 

(For the sake of clarity, the convention was adopted of writing the c-ary expressions in boldface 
characters; the dot denotes multiplication.) Conversely, if (b) is satisfied, m is clearly seen to be 
a term of the sequence {Un{c-\-c)}neN by applying a finite number of times the recursion 
Un+l(c -1, - c) = cUn(c -1, -c) + (-l)w, and assertion (a) follows. 

Moreover, it is clear that, for every n > 2, the number of digits of Un+l(c - 1 , - c) when it is 
written in the c-ary system is one unit larger than the number of digits of Un(c-l,-c) when it is 
expressed in the same system. Since in the c-ary system the number U2(c -1, - c) is expressed by 
the only digit c - 1 , the second part of the theorem follows by induction. 

4. AN ESTIMATE OF Ugc(Un(c - 1 , - c)) (c > 2, n > 1) 

For any c > 2 and n > 1, we know that 

cn-{-\)\ Un{C-\~C): 
c + 1 

hence, we have \ogc(Un(c-1, - c)) = logc(cw - {-l)n) - logc(c +1), which is equal to 

logc c " l - (-lf - log , •H" = n-\ + \ogc\\-tj£--logc 1 + 1 

Now we suppose c fixed and consider logc(U„(c-1, -c)) as a function of n. Since 

tart+v). 
y 

= l + o(l) as y-+0, 

we have ln(l+y) = y + o(y) (y -» 0); logc(l+y) = -^ + o(y) (y -» 0). Then, for n -> +oo, we can 
write 

On the other hand, for every positive real number x, the following inequalities hold: 0 < ln(l + x) 
< x; hence, we have 0 < logc(l + x) < •—•. Taking x = ~, we obtain 

0<logcfl + - l < — i - . 
CV c) cine 

Then, from the above equalities we have, when setting /(c) = logc(l + £), the approximation of 
logc(C/n(c - 1 , - c)) holding for « large, 

logc(f/n(c-l,-c)) = » - l + l o g ^ l - ^ ) - l o g ^ l + ^ 

n-1 
= W - l - r ( c ) + ^ ^ - + o l ^ - J ( « - > + o o ) , 

where 0<^(c)<7 ]L 
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5. LINEAR EQUATIONS IN Zr AND THEM RELATION WITH 
THE SEQUENCES {UM(c-t3 ~c)}neM 

We consider the problem of finding the elements (xl;x2;...'9xk) G(Zrf which satisfy the 
congruence equation 

k 
%Xj = a (modr), (5) 
i=i 

and the constraining equalities 

gcd(xi? r) = dj; j = 1,2,..., * , (6) 

where r and k are fixed positive integers, r is odd, a e Zr , and dhd2y ...9dk are k divisors (not 
necessarily distinct) of r. Let us pose, for each prime divisorp of r, A = #({y, 1 < J < Jt: p\dj}), 
and let us assume that, for eachp, bp>2. 

Starting from formulas which give the total number Na of solutions of the above problem 
(see [1], eq. (3.37), and [4], ex. 3.8, p. 138), replacing in such formulas Ramanujan sums by their 
expressions as given by Holder's equalities, i.e., 

VOT,weN,c(m;n)= £ (e2Kilnym = <P(P) 

gcd( j , n 
$p(n/gcd(n,m)) 

-p(n/gcd(n9m)), 
»)=i 

<p and p being, respectively, Euler's and Mobius' functions (see [5]), and then using basic proper-
ties of <p and p and applying (in reverse order) the distributive property of the product with 
respect to the sum, gives rise to the following equality: 

__(p{r I d^fjr I d2) ...<p(r I dk) 
11 a ~ „ °ra* 

where 

pa= n 
p\r,p](a 

,__t>t n i-fca; 
b„-l 

ip~lf^\ 

(7) 

(8) 
(p-dPj p\r,p\a 

The latter formula can be found in [5] for the special case dl=d2=*" = dk = l only. Compare 
equalities (7) and (8) also with [6]. t 

Now we want to rewrite equality (8) in terms of the generalized Fibonacci sequences that we 
treated in the previous sections. First, we observe that, for each prime divisor/? of r, by applying 
the Binet formula to the terms of {U„(c-1, -c)}nM in the case in which c = p-1, we have, for 
each nonnegative integer w, 

i.e., pUn(p - 2,1 - p) = Q? -1)* - (-!)". Hence, from (8), we obtain 

pa= n 
P\r,pl(a 

= n 
p\r,p\a 

(p-itp n 
\&„-l (p-ir"'-(-ir &„-i 

'p-U„r(p-2,l-p) 

ip-lf n 
(i?-!)*""1 

P-Ub,-i(P-2>l-P) 
(P-1)"< 
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n (P-lf>-\ n 
UK(p-2,\-p) 

P-\ IT u^ip-iA-p). 
P\r,p\a 

(9) 

Now let us fix a prime divisor q of r and let u be a residue class in Zr such that q\u. We 
want to calculate the ratio of Pqu to Pu. From expression (9) of Pa for generic a, comparing the 
case in which a = qu with the case in which a = f/, we immediately obtain 

Pqu _ £ V i ( g - 2 , l - g ) = (g~ Wyi(g-2,l-g) 
/>„ t/tfo-2,l-?)/fa-l) Ub(q-2,l-q) ' 

(10) 

Moreover, from (3), taking c = q - 1 and « = b< -1, we obtain 

.6.-1 Ub(q-2,l-q) = (q-l)Ub,(q-2,l-q)H-ir-\ 

i.e., (̂  - \)UbAq -2,l-q) = Ub(q-2,l-q) + (-!)"', and hence 

3 . ^(g-2,i-y)+(-iyv 
P„ Ub(q-2,l-q) Ub(q-2,l-qY 

(-l)b< 
(11) 

Equations (11) show that the ratio Pqul Pu depends on q, but is independent of u. They also show 
that, when bq is even, then Pqu> PU9 while when bq is odd, then Pqu<Pu. This means that a sum 
having an even number of addenda which are not multiples of q -tends to favor as possible results 
the multiples of q9 while a sum having an odd number of addenda which are not multiples of q 
tends to favor the numbers which are not multiples ofq. Moreover, since r is odd (which implies 
q>3) and for c>2 the integer U„(c-l,-c) tends to infinity as n—>+oo, equations (11) show 
that the greater bq, the nearer one to another are the values of Pqu and Pu. This means that if in a 
sum there are many addenda which are not multiples of q, then the sum tends to favor significantly 
neither the multiples of q nor the integers which are not multiples ofq. More generally, in view of 
(7) and (8), the distribution in Zr of the values of the expression EJU*/ as x1? Xj,..., xk vary in 
ZJ!, tends to be a uniform distribution as k tends to infinity (because Pa tends to 1 and Na 

becomes independent of a). 
Furthermore, if q 2 | r , then for each residue class a in Zr which is a multiple off, there exist 

exactly q-l classes u in Zr not multiples ofq such that a = qu (mod r). In this case, from equa-
tions (10), dividing Pqu I Pu by q - 1 , we obtain the number 

Ub(q-2,l-q) 3 (12) 

which, being independent of a, can be considered as the ratio of the number of the strings (xt; 
x2;...; xk) such that #| EJLi Xj to the number of the strings (xt; x^ ...; xk) such that q J EJU *). 

We now give an example of what was discussed in this section. Let the following problem be 
assigned: 

]T X- = a (mod 3), gcd(xJ-, 3) = 1 for j • = 1,2,...,7. 

We want to calculate the ratio N0/Nv 
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By taking q = 3 and u = 1, we have bq = 7 and then, by (11), we can write 

Np_N3_P3_ H ) 7 1 ^42 
Nx Nx Pt f/7(l,-2) 43 43' 

To obtain the ratio of the number of strings (xt; x2;...; Xj) e(Z^)7 such that 3|E7
=1x/ to the 

number of strings (xx; x2; ...;XJ)G (Z3)7 such that 3|2y=1 JC;, we use expression (12) ancj find that 
this ratio is equal to ffil'I^* °LQ-?t0 43 • 

6. THE SEQUENCES {Un(c +15 c)}mM 

Another interesting class of generalized Fibonacci sequences is the set {Un(c + l,c)}nEN, i.e., 
of the sequences whose characteristic polynomial has c and 1 as roots, c being a positive integer 
not equal to 1. 

For all n e M u {0}5 we have the Binet formulas 

tfw(c + l,c) = ̂ ^ ; t h e n VFIGM, Un(c + l,c) = cn~l+cn-2+ --+C + 1. 

Some examples of such sequences are: 
{£/w(3,2)}weN:0,1,3,7,15,31,63,127,...; 
{0,(4, 3)}„€N : 0,1,4,13,40,121,364,1093,...; 
{Un(5,4)}neN: 0,1,5,21,85,341,1365,5461,...; 
{Un(6,5))nM:091,6,31,156,781,3906,19531,.... 

From equalities (1) and (2) we have, respectively, 
VfieNu{0}, UnU(c + l,c) = cUn(c + l,c) + l 

and 
V H G N U { 0 } , Un+l(c + ]9c) = UH(c + l9c) + J'. 

For a fixed c, it is clear that the terms of {Un(c + \c)}neN, if we exclude the first term 0, are 
exactly the integers which in the c-ary system are written in the form 11... 1. Moreover, for each 
neN, the number of digits "llf that appear in the expression of Un(c + \ c) ip the c-ary system is 
n. 

For any c > 2 and n > 1, we have logc (Un(c +1, c)) = logc (cn -1) - logc (c -1), which is equal 
to 

Since log, (1 + y) - £ + o(y) (y -» 0), 

Further, 
—^—<lnfl-—^ < 0. 

Therefore, we deduce 
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-7—i^~ <iogii-~l<o. 
(c-l) lnc V CJ 

Now we can write, setting 
*(«>= k * ( i - i ) - ^ ( i * ^ ) . 

the approximation to logc (Un(c +1, c)) holding for large n, 

loge(^(c + l,c)) = i i - l + l o & ^ l - ^ - l o g c ^ ^ 

where 0<S(c)<j^. 
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