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1. INTRODUCTION

There exists a very wide literature about the generalized Fibonacci sequences (see, e.g., [3],
where interesting applications to number theory are also shown, and [2], where such sequences
are treated as a particular case of a more general class of sequences of numbers). In this paper we
start by defining some particular generalized Fibonacci sequences (denoted by {U,(c—1,—¢)},en»
c €N} and by studying their properties. In particular, we find interesting relations between a
generic term U,(c—1,~¢), neN, and U,,(c-1,—¢) and show a nice connection between the
numbers U, (c—1, —¢) and their expression in the c-ary enumeration system. After this, we give
an estimate of the value of the logarithm of U, (c—1, — ¢) on the basis c.

Successively, we apply the properties of the sequences {U,(c~1, —c)},cn to the study of the
number of solutions of linear equations in Z,, » eN.

Finally, we briefly show the principal characteristics of another class of generalized Fibonacci
sequences, {U, (c+1,¢)},en, € €N{1}.

2. GENERALIZED FIBONACCI SEQUENCES: THE SEQUENCES {U, (c—-1,-¢c)},n

For each pair (h, k), h,k € C of complex numbers such that k(k* —4k) =0, we denote by
{U,(h, k)}, N the generalized Fibonacci sequence defined as follows:

VneN, n=2, Uh, k) =hU,_(h, k) kU, ,(h, k), Uy(h, k) =0, U,(h, k) =1

An explicit expression of the n' term of {U,(h, k)},. for generic n e N U {0} is given by
the Binet formula

U=

where
1[ 2_4 —_ 2_4

are the distinct roots of the polynomial x? —hx +k € C[x], called the characteristic polynomial of
the sequence. Moreover, for every integer n € N U {0}, we have

. an_ﬁn +ﬂ" _ an+1_aﬂn+aﬂn_ﬂn+l _ an+l_ﬂn+l

o- a-pf a-ff

We then obtain
VneN {0}, a-Uyhk)+B"= U, (h k). )

446 [Nov.



GENERALIZED FIBONACCI SEQUENCES AND LINEAR CONGRUENCES

As the role played by @ and f in the Binet formulas is symmetric, the following equalities are
also true:
VneN U0}, B-U,(hk)+a"=U,,(h k). @

As a particular case, let us consider now the generalized Fibonacci sequences of the form
{U,(c—1,- )}, e, € being a positive integer; from the equalities 7=c—1 and k = —c, we easily
obtain @ =c and f#=-1. Then, for all » €N U {0}, from the Binet formula we have

U,,(c—l,—c)=cn;¥

b

while equalities (1) and (2) show, respectively, that

VneNuU {O}a Un+1(c— la —C) = CUn(C_ l’ _C) +(_1)n’ (3)
and
VreNuw {0}, U(c-1,-¢c)+U,,(c-1,-c)=C". “@

The first terms of some of such generalized Fibonacci sequences, corresponding to fixed values of

c, are:
{Un(07 - 1)}HEN : O: 1) 07 19 0) 17 O) 1) 02 1: 0’ 15 ,

(U,(,-2)},on:0,11,3,5,11,21,43, 85,171, 341, 683, ...;
{U,(2,-3)},en:0,1,2,7, 20, 61,182, 547, 1640, 4921, .;
{U,3,-4)},n:0,1,3,13,51,205,819, 3277, 13107, 52429, .. ;
{U,(5,-6)},n:0,1,5 31,185 1111, 6665,39991, 239945, ...

3. {U,(c—1,-c)},n (c=2) IN THE c-ARY ENUMERATION SYSTEM

Theorem: Let ¢>2 be a fixed integer; then, for each fixed integer m>2, the two following
assertions are equivalent:
(@ IneN:m=U,(c-1,-c);
(b) in the c-ary enumeration system, the expression of 7 is either of the form
(c—=10(c—1)...0(c—1) or of the form (c-1)0(c—1) ... 0(c - D1.
Moreover, when for a given m the two assertions are satisfied, we have m = Ué a(c—1,—c), where
t denotes the number of digits of m which appear when it is written in the c-ary enumeration
system.
The theorem can be proven by noticing that, for every n €N U {0}, we have the recursion
U, (c-1,-c)=cU,(c-1,—-c)+(-1)". Hence, if (a) is satisfied, assertion (b) straightforwardly
follows by induction from the first few terms:
Uyc-1,-¢)=c-1-1=c¢c—1;
Uy(c-1,-¢)=c-(c-D+1=10-(c-D+1=(c-D0+1=(c-DI;
Uyfe-1,-c)=c-Uy(c-1,-¢c)-1=10-[(c-DI]-1=(c-1)10-1
=(c-1)0(c-1);
Us(c-1,-¢c)=c-Us(c-1,-¢0)+1=10-[(c-D0(c-1)]+1
=(c-1D)0(c-1)0+1=(c-1)0(c-1L;
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Ugc-1,-c)=c-Us(c-1,-¢c)-1=10-[(c-1)0(c-D1]-1
=(c-D0(c-1D10-1=(c-1)0(c—-1)0(c—1).
(For the sake of clarity, the convention was adopted of writing the c-ary expressions in boldface
characters; the dot denotes multiplication.) Conversely, if (b) is satisfied, m is clearly seen to be
a term of the sequence {U,(c—1,—c)},.n by applying a finite number of times the recursion
U, (c-1,-¢c)=cU, (c-1,—-c)+(-1)", and assertion (a) follows.

Moreover, it is clear that, for every n>2, the number of digits of U,,,,(c~1,—¢) when it is
written in the c-ary system is one unit larger than the number of digits of U, (c -1, —¢) when it is
expressed in the same system. Since in the c-ary system the number U,(c -1, —¢) is expressed by
the only digit c—1, the second part of the theorem follows by induction.

4. AN ESTIMATE OF log (U,(c—-1,—¢)) (c=2,n>1)

For any ¢>2 and n>1, we know that

cn_ __1 n
U e-1,-9= =L

hence, we have log,(U,(c-1, —¢)) =log,(c" — (-1)") —log (c +1), which is equal to

log, [c" (1 - (:E?—n)] —log, [c(l +%)j| =n-1+log, (1 - (—c#] —log, (1 + %)

Now we suppose ¢ fixed and consider log,(U,(c—1, —c)) as a function of n. Since

ln(;+y) i+o(l) as y >0,

we have In(1+y) =y +o(y) (y = 0); log,(1+y) = Ey;+o(y) (y > 0). Then, for n — +wo, we can

write
n _nyn-1
log, (l— (—c}“) ] () i (c ) (n— +0).

'Inc

On the other hand, for every positive real number x, the following inequalities hold: 0 <In(1+x)
< x; hence, we have 0 <log, (1+x) <{%. Taking x =, we obtain

1 1
0 - )
<10g0(1+0)<clnc

Then, from the above equalities we have, when setting y(c) = log, (1+1), the approximation of
log.(U,(c—1, —c)) holding for n large,

log (U,(c-1,-¢))=n-1+log, (1 - (_Pn ) —log, (l + %)
c

=n-1-p()+ N n, (C) (n—> +oo),

c"Inc

where O<y(c) <

clnc
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5. LINEAR EQUATIONS IN Z, AND THEIR RELATION WITH
THE SEQUENCES {U,(c—1,-¢)}, N

We consider the problem of finding the elements (x;; x,;...; x,) € (Z,)* which satisfy the
congruence equation

2. x;=a (modr), )

Jj=1
and the constraining equalities

ng(xj>r):dj; j=1’2""’k) (6)

where 7 and k are fixed positive integers, 7 is odd, a € Z,, and d,,d,, ...,d, are k divisors (not
necessarily distinct) of 7. Let us pose, for each prime divisor p of 7, b, = #({j,1< j<k: pld}}),
and let us assume that, for each p, ,>2.

Starting from formulas which give the total number N, of solutions of the above problem
(see [1], eq. (3.37), and [4], ex. 3.8, p. 138), replacing in such formulas Ramanujan sums by their
expressions as given by Holder's equalities, i.e.,

Vm,n eN, c(m;n) = ) g¥iln PP ) — n/ ged(n, m)),
ged(j, m)=1

@ and u being, respectively, Euler's and Mobius' functions (see [5]), and then using basic proper-
ties of ¢ and u and applying (in reverse order) the distributive property of the product with
respect to the sum, gives rise to the following equality:

N, = ¢("/d1)¢("/:'2) @ /d) p %)
where
r= 1] [l—i‘—Qb"T]- I [l—i‘—’lb”[—l.l]. ®
pnplal  @=D7 ] pinpal (@-D7
The latter formula can be found in [5] for the special case d, =d, =:--=d, =1 only. Compare

equalities (7) and (8) also with [6]. .

Now we want to rewrite equality (8) in terms of the generalized Fibonacci sequences that we
treated in the previous sections. First, we observe that, for each prime divisor p of 7, by applying
the Binet formula to the terms of {U,(c—1, —¢)},n in the case in which ¢ = p—1, we have, for
each nonnegative integer 7,

U,p-2.1-p)= E==EL

ie, pU,(p-2,1- p)=(p-1)"-(-1)". Hence, from (8), we obtain
(p-D* —(—1)”!’} [(p—l)bf‘—(—n”""}
p=TT |2 =) -
plgra[ (p-D’ plgla (-1
p-U, (p-2,1-p) p-Uy «(p-2,1-p)

3&[ (p-1" ]H[ (p-D*" ]
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U, (p-2,1-
| 222 o eo2ion. O
1)" pir, pta

pir p- pir, pla

Now let us fix a prime divisor ¢ of 7 and let # be a residue class in Z, such that gfu. We
want to calculate the ratio of F, to F,. From expression (9) of F, for generic a, comparing the
case in which a = qu with the case in which a =u, we immediately obtain

F. Up,-1(9-2,1-9) _ @-DUs,(q-2, 1-g)

Lqu _ = 10
R U a-21-9/a-) Up4-21-9 (10
Moreover, from (3), taking ¢c=¢~1 and n=4, -1, we obtain
Uy, (4-2,1-9) = (@- DU, 1(g-2,1-@)+(-D"",
ie., (- DU, 1(q-2,1-9)=U; (g—2,1-g)+(-1)", and hence
B _Un@-21-9+CD" _ (yh an
k Uy, (g-2,1-9q) Uy (g-2,1-9)

Equations (11) show that the ratio F, / F, depends on ¢, but is independent of . They also show
that, when b, is even, then F, > F,, while when &, is odd, then F,, <F,. This means that a sum
having an even number of addenda which are not multiples of g tends to favor as possible results
the multiples of ¢, while a sum having an odd number of addenda which are not multiples of ¢
tends to favor the numbers which are not multiples of g. Moreover, since 7 is odd (which implies
g 2 3) and for ¢>2 the integer U,(c—1,—c) tends to infinity as #» — +oo, equations (11) show
that the greater b,, the nearer one to another are the values of £, and F,. This means that ifina
sum there are many addenda which are not multiples of g, then the sum tends to favor significantly
neither the multiples of ¢ nor the integers which are not multiples of g. More generally, in view of
(7) and (8), the distribution in Z, of the values of the expression Z’;=1 X; 88 Xj, Xp,..., X vary in
Z;, tends to be a uniform distribution as & tends to infinity (because P, tends to 1 and N,
becomes independent of a).

Furthermore, if g?|7, then for each residue class a in Z, which is a multiple of g, there exist
exactly g —1 classes # in Z, not multiples of ¢ such that a = gu (mod r). In this case, from equa-
tions (10), dividing F,, / F, by g1, we obtain the number

Up,-1(q-2,1-9)
U (g-2,1-q) °

which, being independent of @, can be considered as the ratio of the number of the strings (x,;
X,; ...; %) such that g| Zj‘-_;l x; to the number of the strings (x;; x,; ...; X, ) such that q,i’Z’le X5

(12)

We now give an example of what was discussed in this section. Let the following problem be
assigned:

7
ij =g (mod3), ged(x,3)=1forj=12,..,7.
j=1

We want to calculate the ratio N/ N,.
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By taking ¢ =3 and u =1, we have b, =7 and then, by (11), we can write

No_No_B_, () _ 1 _4
N N B UG-2) @B 4

To obtain the ratio of the number of strings (x;; x,;...; %) €(Z3)” such that 3|3

number of strings (x;; X,; ...; %) € (Z‘“b7 such that 3] %

this ratio is equal to 3“& i;, ie,toZl

j=1%; to the

J=1%;, We use expression (12) and find that

6. THE SEQUENCES {U (c+ L c)},en

Another interesting class of generalized Fibonacci sequences is the set {U,(c+1,¢)},en, 1€,
of the sequences whose characteristic polynomial has ¢ and 1 as roots, ¢ being a positive integer
not equal to 1.

For all n e N U {0}, we have the Binet formulas

=" 4" e+

Uf(c+l,c)= (’; _11,

Some examples of such sequences are:
{U.G,2},n:0,1,3,7,1531, 63,127, ..;
{U,(4,3)},en:0,1,4,13,40,121, 364, 1093, .. ;
{U,(5,9},en:0,1,5,21, 85,341, 1365,5461, ..
{U,(6,5},en:0,1,6,31,156,781,3906,19531, ...

From equalities (1) and (2) we have, respectively,

VreNuU {0}, U, (c+Lc)=cU, (c+1c)+1

and
VneNuU {0}, U, (c+Le)=U,(c+1c)+c".

For a fixed c, it is clear that the terms of {U, (c+1,¢)},n, if we exclude the first term O, are
exactly the integers which in the c-ary system are written in the form 11...1. Moreover, for each
n €N, the number of digits "1" that appear in the expression of U, (c+1, ¢) in the c-ary system is

n.
For any ¢ >2 and n> 1, we have log,(U,(c+1, ¢)) =log, (c" - 1) -log, (c—1), which is equal

n-1+log, (1—5) logc(l—l).

Since log,(1+y) = &= +0(y) (y = 0),

1y 1 1
kogc(l—cﬂ)— L”lnc+0(c”) (n— +ow).

1 1
—;:—T<Hn(l—z)

to

Further,

A

0.

Therefore, we deduce
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1 1
@-Dinc <logc(l c) <0.

). 1
logc(l c) —logc(l+c_1),

the approximation to log, (U,(c +1, ¢)) holding for large n,

Now we can write, setting

s(c)=

c

log, (U,(c+1,¢))=n—-1+log, (l _c”i) ~log, (1 - 1)

c"Inc leld

=n-1+6(c)- 1 +0(~1—) (n— +0),

where 0 < §(c) < m
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