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1. INTRODUCTION 

Various authors (see, e.g., [5], [7], [16], [17]) have studied number theoretic properties asso-
ciated with the matrix S(ri), defined in effect by 

S(n) = [shJ]nxn, (1.1) 
where 

\n-i J J ~ 1 I yj+y'-n-l n-i sUj{ri)=SiJ=(-ir,['n_j)p>+j-"-Y-', (i.2) 

where p, q are arbitrary integers. These properties have generally been in the context of second-
order linear recursive sequences, particularly the Fibonacci numbers. We note that, for Horadam's 
generalized sequence {wn} = {wn(a, b;pyq)} [13], we have the recurrence relation 

with initial conditions w0 = a,wl=b. For the matrix S, we have the comparable partial recurrence 
relation 

sU=PslJ-l-<Isi+lj-V ( L 4 > 

We define the combinatorial matrix [2]: SPtq(/?;2) = [\su j(n)\]nxn. 
The purpose of this paper is to show how higher-order sequences arise quite naturally from 

S(n) and to suggest problems for analogous further research arising out of further generalizations 
of the binomial coefficients. For notational purposes, we consider SPfq(n; r), where Sp^q(n;2) = 
S(n) above, and for simplicity we take the absolute values of the numbers in the cells of each 
matrix. 

2. PMELIMINAMY OBSERVATIONS 
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We observe that the falling diagonal sums are the Fibonacci numbers {1,1,2, 3,5,8,13} and the 
rising diagonal sums are the binomial coefficients {7,21,35,21,7,1}. Similarly, 
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Other generalizations can be pursued. For instance, 

2k - I T -1 = ^2k+l - P ~ ' 

where 

(2.1) 

52*,-l-52*,-l£ 

in which E is the elementary (self-inverse) matrix 

E -lei,jinxn 

eiJ = 
if/ = H + l, 
otherwise. 

E is the unit matrix with rows reversed. It is used again in Section 5. An example of (2.1) when 
k~ 1 is 

M o o 0Y0 o o i\ (o o o i\ 
6 1 0 0 

12 4 1 0 
8 4 2 1 

0 0 1 6 
0 1 4 12 
1 2 4 8 

0 0 
0 1 

1 12 
8 48 

1 4 16 64 

The falling (from left to right) diagonal sums in these matrices are generalized Pell numbers, 
{P„}, defined in turn by the second-order linear recurrence relations 

P„ = 2kPn_1+P„_2, n>2,k>0 (2.2) 

with initial conditions PQ = 0, Pl = l. When k = 0,1, we have the ordinary Fibonacci and Pell 
numbers, respectively. 

In what follows, we use Bondarenko's notation (£)r for the number of different ways of dis-
tributing m objects among n cells where each cell may contain at most r-\ objects [3]: 

r-\ = 1, 

n I _ | n 

WJr V(r-1)"~, MJr' 
n\ _/0> n<0,m<0, orm>(r-Y)n, 
w l II, n = m = 0. 

m)r iJlm-' ' + 1j/ 
418 [NOV. 



COMBINATORIAL MATRICES AND LINEAR RECURSIVE SEQUENCES 

3* THE A AND S MATRICES 

We define the A and S matrices by 

and 

A(n;r) = 

S(n;r) = 

M] 
Ml 

(3.1) 

(3.2) 

For related developments, see [4], [8], [18]. As examples, we now look at 5(7; 2) = 5 ^ (7; 2) 
and the associated matrix A(7; 2), 
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Then It Is readily verified that 

where 
A(l; 2)5(7; 2) = 5(7; 3), (3.3) 
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S(7; 3) = 

with falling diagonal sums {1,1,2,4,7,13,24} which Is a subset of the set of n-step self-avoiding 
walks on a Manhattan lattice, and the elements satisfy the linear third-order recurrence relation 
un - un_x +un_2 +w„_3, n > 3, with 1̂  = 0,1^ = 1,1^ = 1 (see [21]). Next, let 
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Then 
A(7;3)S(7;2) = S(7;4). 

More generally, 

Theorem 1: A(n; r)S(n; 2) = S(n; r +1). 
Proof: 

A(n;r)S(n;2) 

(3.4) 

£:!)] 
[5&"w-*) 
E U - M A * 1 ! 

from the definition of 
m 

reversing the order of summation, 

from Equation (1.15) of [3], 

= S(n;r + l). D 

The elements of S and A can be rearranged to form generalized Pascal triangles (see [19], 
[22], [25]). They can also be made into tetrahedrons with Pascal's triangle as one section (see 
[11], [12], [21]). Ericksen [9] has elaborated the principal properties of Bondarenko's coefficients 
in a pyramid. 

4. RECURSIVE SEQUENCES 

The rising diagonal sums associated with each of the r* rows in the triangles of Section 3 
yield the Fibonacci sequences and their generalizations; that is, the rising diagonals associated 
with the combined second rows yield the Fibonacci numbers. We can express this by the follow-
ing theorem. 

Theorem 2: 

u, n+1? 

in which {Un} is the generalized Fibonacci sequence of arbitrary order r defined by the recurrence 
relation 

Un = iun_p n>l, 

with initial conditions U_n = 0, n = 0,1,2,..., r - 2, Ux = 1. 

Proof: Consider 
n-k \ir-\)nlr\ 

= I 
n-k 

from a consideration of the zero terms in the upper portion of the (^)r array. Then dQ = 1, dn = 0 
for n<0 and, for n>0, 
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= X X l " 1 " changing the summation index to j = k - i +1 then reverting to £, 
/=1 k=-i+l V / r 

n-i-k 
k 

using the boundary conditions, 
1=1 fc=0 

= tdn-, 
1=1 

Thus, */w satisfies the generalized Fibonacci recurrence relation of arbitrary order r with the given 
initial conditions. D 

Basically, this theorem says that each element in the (*)r array is the sum off elements above 
and to the left of it, and that r consecutive diagonals are needed to obtain all the terms required to 
form the elements of the next diagonal. 

When r = 2, the theorem reduces to a familiar expression for the Fibonacci numbers, namely, 

(4.1) [n+l = i (v) 
and when r = 3, we get equation (4.1) of [21]: 

L«/2J ln/3} 

a w+l ' Z- - -^- in-m-jum-rj] ^ fn — k 
2-* I mA- i II / l ~ ^ » 1 k 

m=0 j=Q 

n-m-j\(m+j]1 
(4.2) 

5. INVERSE MATRICES 

The inverse matrices have some neat properties. For instance, for absolute values of the 
entries, we have 

STl = ESE, (5.1) 
where E is the elementary matrix defined in Section 2. Of more interest is 

4 5 ™ i ( 7 ; 2 ) -
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(5.2) 

The absolute values of the elements of the columns of A can be rearranged to form the 
rows of Table 1. The row and column headed M refer to the corresponding sequence in Sloane 
andPlouffe[23]. 

The elements atJ in Table 1 satisfy the partial recurrence relation 

at,j=ai-ij+at+i,j-i> iJ>l, 
with boundary conditions 
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31-
a Catalan number [14]. A general solution of this is given by 

°''J l+j + \{ J 

TABLE 1. Elements of the Inverse Associated Matrix 
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3640 

6188 

9996 

M 

1459 

1459 

2809 

3483 

3904 

4177 

4413 

Note that the rising diagonals in Table 1 generate the Catalan numbers. The elements in 
Table 1 correspond to the number of two element lattice permutations, where the permutation 
represents a path through a lattice where the path does not cross a diagonal [6]. Since there are 
some intersections among the sequences in Table 1, a topic for further research could be to con-
sider if these are the only intersections (cf. [24]). 

Bondarenko's generalization of the binomial coefficient takes no account of the order across 
or within cells. Further research could accommodate this order and then apply these extensions to 
other combinatorial applications along the lines of the work of Letac and Takacs [15] who, in 
effect, related the permutations associated with Bondarenko's Q)3 to random walks along the 
edges of a dodecahedron or the connections of combinatorial matrices to planar networks [10]. 
Such research should lead to generalizations of the Fibonacci sequence which would be different 
from the {£/„} discussed here and the standard generalizations of Philippou and his colleagues 
[20]. 
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