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PROBLEMS PROPOSED IN THIS ISSUE

H-593 Proposed by H.-J. Seiffert, Berlin, Germany
Let p >S5 be a prime. Prove the congruence

(P01 (1 opl_ ]
CD ez =22 (mod p).
2 PN TES D > (mod p)

H-594 Proposed by Mario Catalani, University of Torino, Torino, Italy
Consider the generalized Fibonacci and Lucas polynomials:

Fu(x,y) = xF,(x, )+ yF, (%, y), Fo(x,») =0, F{(x, ) =1;
Ln+l(x’ y) = an(x’ y) +yLn—l(xa y)’ Lo(x: y) = 27 Ll(x’ y) =X

Assume y =0, 2x*—y#0. We will write F, and L, for F,(x,y) and L,(x, y), respectively.
Show that:

%i](n;k) oty Xy =Yy H O, 4 XYY,

1. » x = = >
& Yo y@F )
i_%J 2 JERAY 3 |
-k k. -2k XLpp = YLoy + (=X)L, +(=x)""yL,_,
2. (n )x Ly = .
Uk )y Y@ -y)

H-595 Proposed by José Diaz-Barrero & Juan Egozcue, Barcelona, Spain
Let £, n be positive integers. Prove that

> (kpir 1){%(—1)"*"!’ () P;"""‘} oy

k=0 j=0'

where P, is the n't Pell number, i.e, f, =0, ,=1,and F,,, =2F,,,+ b, fornz2.
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SOLUTIONS
A Convoluted Problem

H-583 Proposed by N. Gauthier, Royal Military College of Canada
(Vol. 40, no. 2, May 2002)

A Theorem on Generalized Fibonacci Convolutions

This is a generalization of Problem B-858 by W. Lang (The Fibonacci Quarterly 36.3, 1998).
Let n>0, a, b be integers; also let 4, B be arbitrary yet known real numbers and consider the

]

generalized Fibonacci sequence {G, = Aa” + BB"}. _,, Where
a =%[1+\/§], ﬂ=%[1—~/§].
For m a nonnegative integer, prove the following generalized convolution theorem for the

-] 0

sequences {(a+n)"}r_, and {G,}r .,
Z (@+k)"Gyyey = Z NA"(@)Gygsrn — (@ +n+ )Gy il
k=0 1=0

where the set of coefficients {¢/"(v); 0<m; 0<I<m;, v=aora+n+1} satisfies the following
second-order linear recurrence relation
W) = v+ D)+ ), W) =1L g () =v, () =1

with the understanding that ¢”j(v) = 0 and that ¢}, ,(v) = 0.

Prob. B-858 follows as a special case if one sets a=0, m=1, b=n,and A=-B=(a-p)"
in the above theorem. Indeed, one then gets that

G,=F,, (0)=0, d(0) =1, cj(n+1), and c}(n+1)=1

and the result follows directly.

Solution by Paul S. Bruckman, Berkeley, CA

For typographical clarity, we change the summation variable "" to "j" and we also change the
notation "¢'(x)" to "c(x; j,m)". We also note that there is a misprint in the statement of the
problem. The correct expression in the right member of the statement of the problem (as modi-
fied by the indicated changes in notation) is as follows:

Zj e(a; j, m) Gb—a+j+2 —c(a+n+1, j,m) Gb—a—n+j+1]-
7=0

We employ the standard finite difference operators A and £ =1+ A, where the operand is x.
We first demonstrate the following result:

e(x; j,m)= &/ j1 = (x"). 0]
Proof of (I): Let d(x; j,m)=N /j!(x™), 0< j<m for all real x. Clearly, d(x; j,m) is a poly-
nomial in x. Note that d(x; 0,m)=x". Also, d(x;m,m)=1 for all m and x, and d(x;0,1) = x.
Thus, the boundary conditions satisfied by the c(x; j, m) are also satisfied by the d(x; j, m).
Next, note that
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d(x; jm+ )= N JI ) = (1703 Col-DE Gt -y
k=0
. {(x+j)/j!}ki,ck(-1)”(x+j—k)'" SIS G (et = k)
='0 k=1 g
G+ DS Gl D et =R+ UG -0 S G+ j=1- k"
k=0 k=0

=+ D 1) +HYTG =D ") = G+ )d(x; j,m) +d(x; -1, m).

This is the same recurrence as the one satisfied by the c(x; j,m). Since the two-dimensional
sequences c(x; j,m) and d(x; j,m) satisfy the same recurrence and have the same boundary
conditions, they must be identical. This establishes (1). O

Therefore, the left member of the putative identity (denoted as L) is transformed as follows:
8= E*(x")Gyoes
k=0

=[Aa"((E/ay"' =1}/ (E/a-1)}+BB*{(E/ By™ -1}/ (E1 B- D3I,

- ZEk(xm){Aab—a—k +B b-—a-—k}

x=a k=0 x=a

or
QL= [Aab—a—n{EnH _ an+l) / (E _ (Z)} + Bﬁb—a—n{(EnH _ﬂn+l) / (E _ﬂ)}](xm)’xqr' (2)

On the other hand, if R represents the right member of the (corrected) putative identity, then

R = ZAk(xm){Aab—a+2+k +B b—a+2+k} _Z Ak(xm){Aab—a+l—n+k +B b—-a+l—n+k}

k=0 x=a k=0 x=a+n+1
R = (4" {(Aa)™ -1}/ (Aa = 1) + B {(AB™ -1}/ (AB-DH(") _,
- [4a" 1 ((Ba)™ = 1}/ (Aa -1 + BF~ " ((ABY™ =/ (AB-DIC™) _, ..,

m - [A ab-a+1—n{(Aa)m+l _ 1} / (Aa - l)(an+l _ En+l)
+B b—a+l-n{(Aﬂ)m+l _ 1} /(Aﬂ _ l)(ﬂnﬂ _ En+l)](xM)|x=a.

Now note that A™!(x™)=0. Also, Ac~1=(E-1)a-1=Ea-a? and AB-1=(E-1)f-1=
Ep - B*. Therefore, we see that

R= Aab—a—n{(EnH _ an+1)/(E__ a)} +Bﬂb—a—n{(En+l -—ﬁn+l)/(E _ﬂ)}(xm)1
Comparison of (2) and (3) shows that £=%. QE.D.
Also solved by the proposer.

©))

x=a"

Find Your Identity

H-584 Proposed by Paul S. Bruckman, Berkeley, CA
(Vol. 40, no. 2, May 2002)

Prove the following identity:

(Freat L)’ +(Fy+ L) +F,, + Lo
=QF 3+ Ly, +(F) + (5F,42)° +1920F,F,  \F, 2 F 3B,
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Solution by the proposer
We begin with the following identity:

(@+b+c+d-e)l+(a+b+c-d+e)’ +(a+b-c+d+e)’+(a-b+c+d+e)
+(-a+b+c-d+e)’ +(a+b+c—d-e)’ +(a+b-c+d-e)’ +(a-b+c+d-e)’
+(-a+b+c+d-e)’ +(a+b-c—d+e)’+(a-b+c—d+e)’ +(-a+b+c—-d+e)’ (¥
+(@-b—c+d+e) +(-a-b—c+d+e)’ +(—a+b+c+d+e)’ +(a+b+c+d+e)
=1920abcde.

We replace a, b, ¢, d, and e by x,, x,, x;, x,, and x;, respectively. We may prove (*) (as thus
modified) by expanding

(% + X, + 33 + %, +X5)° = 05+ 50,4 +100 53 + 200 3 + 3005, + 600,15, + 12001111

where o, = S u®vPwe, for example (with u, v, and w representing the x;'s over all possible per-
mutations), with similar definitions for other quantities. Then we note that in the sum of the 16
terms indicated in (*), the terms involving (x;)° vanish, since their coefficient is +1 8 times and —1
8 times. The terms involving (x,)* also vanish, since their coefficients are x, twice and —x, twice
(for each i=2,3,4, or5). The terms involving (x,)* have two kinds of coefficients: (x,)? and
—(xi)z; also, x;x; and —x;x;, where i or j=2,3,4, or 5, i # j. In either case, each sign occurs an
equal number of times, and so the term vanishes. The remaining terms involving (x;)* have two
kinds of coefficients: Jc,.(xj)2 and —x,(xj)z; also x;x;x; and —x,x;x;. Here, i,j, or k=2,3,4, or 5,
with 4, j, and k distinct. In either case, the positive terms again cancel the negative ones, and so
the terms involving (x,)* all vanish. Finally, the remaining terms involving the first powers x,
have coefficients x,x;x,x5 or —x,x;x,x; for each of the 16 terms, but are such that the total term is
always positive. Therefore, the total coefficient of the product x,x,x;x,x; is 16 * 120 =1920. By
symmetry, the sum is therefore equal to 1920x,x,x;x,x;. Thus, (*) is proved.

In particular, if we set a=F,, b=F,,, c=F,,,, d=F,;, and e=F, ,, we obtain (after
some simplification) the indicated resuit.

Also solved by K. Davenport, L. A. G. Dresel, O. Furdui, N. Tuglu, and H. Civciv.
A D-Sequence

H-585 Proposed by Herrmann Ernst, Siegburg, Germany
(Vol. 40, no. 4, August 2002)
Let (d,) denote a sequence of positive integers d, with d, >3 and d,,, -d,>1, n=1,2,....
We introduce the following sets of sequences (d,):

Bz{(d,,): 1oy ol fora]lneN};

By i Fa, Faa
C=:(d,): 0< 1 _1__1 forallne N;.
Fao B Fyoa
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Show that:
(a) there is a bijection f:]0,1]— B, f(x)=(d,(x))>
(b) B is asubset of 4 with A\ B = @;
(¢c) Cisasubset of B with B\C = 0.

Solution by Paul S. Bruckman, Berkeley, CA
A sequence (d,),.; of positive integers is called a D-sequence iff d; >3 and d,,,-d, >1,
neN. Let A denote the set of all D-sequences. Also, for typographical convenience, we write
F(k) for F,. We also write §, ,, =3 1/Fd,), and S, =S, o for all (d,) € A. For a given
0 =(d,) € A, we may also write S,(6)=S,. We may characterize A4, B, and C as follows:
A={6=(d,)cA:5()=1};
B={6=(d,)eA:1/Fd,)<S,(8)<1/F(d,-1) forallne N},
C={=d,)eA:0<1/Fd,-))-1/F(d,)-1/F(d,,,—1) foralln e N}.

n=1>

Note the slight modification in the definition of B ("<" instead of "<" in the second inequality
defining B.

Proof of (a): Suppose x; €(0,1) is given. Then there exists d, € N, d, =3, such that
1/F(d,) <x <1/F(d,-1). Let x, =x,-1/F(d,). Note that 0<x, <x; <1. We continue in this
fashion; generaily, we define the sequence (x,) as follows: x,,,=x,-1/F(d,), 1/F(d,) <x, <

1/Fd,-1),d,,>d,, neN. Note that (x,) is a decreasing sequence bounded below by zero.
Since d, —» o as n ——> o, we see that x, is arbitrarily small. Hence, lim,_, x, = 0. By iteration,
x=1/F(d)+x=1F@d)+1/F(d)+x;=--=8 ), +x), forall M eN. Allowing M — oo,

we deduce that x; =8, where the D-sequence (d,) is uniquely determined by the construction
indicated above. Note, however, that the maximum value of S, over the domain A is 27 ;1/F,
=0, say, where o ~13599. In other words, there is nof a one-to-one correspondence between
(0,1) and A, the set of all possible D-sequences. There are sequences 6 € A such that §; ()2 1.
We may use the same construction as before, if 1 < x; <o. For example,

1 11 1 1 1
1= 2+3+§ 34 89+987+196418+2178309+
S DI W U W

“FF F R Re B By

~ corresponding to the D-sequence &, = (3, 4,6,9,11,16,27,32,...), such that S,(5)) =1.
| We are to establish that if x, €(0,1) then there exists a unique & € B such that §,(0) <
1/F(d,-1) for all ne N; the other condition for § € B, namely that 1/ F(d,) <S,(6) for all
n e N, is automatically satisfied. We already know how to effect the construction of the unique
& € A such that x; = §,(6). It only remains to show that, for such &, §,(6) <1/F(d,—1) for all
neN. Note that x; =S, 1(8)+x, =x~S,(6)+x, for all e N. This implies that x, = S,(5)
for all n e N. By our construction, x, = §,(5)<1/F(d,-1) for all ne N. This completes the
proof of part (a).

Note: Although, for a given x, €(0,1), there exists a unique J € B corresponding to x; (as
provided by our construction, and such that S,(5) = x,), there may be other 6 € A\B, say &',
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such that S,(6")=x,. An illustration of this is provided by x,=p=1/F, +1/F;+1/Fg+--
~05354. Clearly, this is generated by the sequence &' = d"(p) = (4, 6, 8, ...), which is an element
of A. However, it is easily verified that &’ is not an element of B, since 1/F(d,-1) =1/F(3) =
1/2<§,(6") = p=05354. Our construction, however, yields the alternative sequence & = 5(p) =
(3,9,13,15,24,27,31, 35,37, 39,42, 49, ...), which also has §,(6) = p= 05354 and is, moreover,
an element of B (this is true by the nature of the construction).

Proof of (b): Suppose 6 € B. Then S§,(8)<1/F(d;-1)<1/F(2) =1; hence, 6 € A. Thus,
Bc A.

As we have seen, 8’ e A\ B, where &’ =(4,6,8,...) =(2n),_,, but S,(6") = p~ 05354 <1, so
6,€A. Hence, 8’ €A\B and A\B+# .

Proof of (c): Suppose 6 eC. Then, for all ne N, 1/F(d,-1)21/Fd,) +1/F@d,.,-1).
By iteration, 1/ F(d,-1)>1/F(d,) +1/F(d,,,) + - +1/F(d,,) +1/ F(d,,,, — 1) for all M, n with
M2z2n21. Thus, 1/F(d,-1)>S§, ,,(0) for all such M, n. Allowing M — oo, it follows that
1/F(d,-1)2S,(5) forall ne N. Therefore, § € B, which shows that C c B.

We display an example of a sequence 6” e B\C'.

We let 6”7 =(6,8,10,12,15,18, 20,22, 24, 29, ...) represent the element of B determined by
our construction, such that §,(6”) =02. By definition, 6” € B. However,

1 1 1 1 1 1 1 1 1_ -1

F@d,-1) F@d) Fd,-1) FG) F(6) F() 5 8 13 520
which shows that 6” ¢ C; hence, §” e B\C and B\C # . This completes the proof of part (c).

Note: More generally, 1/F(2n-1)-1/F(2n)-1/F(2n+1)=-1/F2n-1)F(2n)F(2n+1) <0,
after simplification. Thus, given § =(d,) €A with d;, =2n and d,,, =2n+2, say, then § ¢C,
i.e,ifd, €§ €C and d, is even, then d,,, —d, >3.

0

b

Also solved by the proposer.

Note: Problem H-582 (proposed by Ernst Herrman and solved by Paul S. Bruckman) will appear
in the May 2003 issue of this quarterly.

o % o
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