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1. INTRODUCTION 

For convenience, we quote some notations and symbols in [7]: Let the sequence {wj be 
defined by the recurrence relation 

Wn+k = <W**-1 + • • • + %-lW*+l + akWn 0-1) 
and the initial conditions 

wQ = c0? wx = cl9...,wk_x = ck_l9 (1.2) 

where al9 ...9ak and c0,..., ck_x are complex constants. Then we call {wj a A^-order Fibonacci-
Lucas sequence or, simply, an F-L sequence, call, every wn an F-L number, and call 

fix) = xk- a^-1 - • • • - ak_tx ~.ak (1.3) 

the characteristic polynomial of {wj. A number a satisfying f(a) = 0 is called a characteristic 
root of {w„}. If % ^ 0, we may consider {wj as {wJtZ- We denote Z(%) = Z for % * 0 or 
Z+^{0} for dk = 0. The set of F-L sequences satisfying (1.1) is denoted by £l(al9...,ak) and 
also by Q(/(x)). Let {i$} ( 0 < i < i - l ) be a sequence in 0( / (x)) with the initial conditions 
t$ = Sni for 0 < n < k -1, where 5 is the Kronecker function. Then we call {u®} the Ith basic 
sequence in 0 ( / (x ) ) , and also call {«£*™!)} the principal sequence in 0( / (x) ) for its impor-
tance. In [3], M. E. Waddill considered the congruence properties modulo m of the fc^-order 
F-L sequence {MJ eQ(l,. . . ,l) with initial conditions M0 = M1 = -- = A/^„3 = 0 and Mk_2 = 
Mk^t = I In this paper we apply matrix techniques to research the congruence properties modulo 
m of the general £*-order F-L sequence {wj G O ( % ...9ak) = 0 ( / (x ) ) , where al9...9ak e Z . In 
Section 2 we give required preliminaries. By using matrix techniques, in Section 3 we discuss the 
congruence properties of F-L sequences and get a series of general results. In Section 4 we apply 
our general results to the special case of second-order F-L sequences. As examples, two more 
interesting theorems are given. 

2. PRELIMINARIES 

Let {wj e 0(al3 ...,%) = 0( / (x) ) . Denote col wn = (w^„1? wn+k^2,..., ww)r Then, from 
(LI), we have 

col wnU = A col wn, (2.1) 

where 
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A = 
1 

1 

ak-l ak 

(2.2) 

is called the associated matrix of {w„}, also of f(x). And we also denote Q(au ...,ak).hy Q(A). 
Note that in A the entry in the Ith row and j * column is 0 if / > 1 and /' * j' +1. 

Theorem 2.1: Let {w„} e Q(A). Then, for n e. Z(at), 

col w„ = .4" col w0. (2.3) 

For simplicity, in this paper we prove all theorems only for Z(%) = Z. 

Proof: If n > 0, then (2.3) can be proved by induction and by using (2.1). If n > Q, again by 
induction and by using (2.1), we can easily verify col wm+n = Am col wn for m > 0. Taking m = —n 
we get col w0 = 4̂"̂  col ww, whence (2.3) also holds for n< 0. D 

Theorem 2.2: Let {i^0} (i' = 0,l , . . . ,£-l) be the i* basic sequence in 0(a1?...?%) = 0(i4). 
Then, for W G Z ( % ) , 

4 " = (col ig-l\ col i#f-2)
?... ? col f#f ). (2.4) 

Proof: From (2.3), the right-hand side of (2.4) is equal to (let /be the identity matrix) 

(An col 4k~l\ An col 4k~2\ ...,A" col 40)) 
= A%col 4k'l\ col 4^ 2 ) , . . . , col n f ) = AnI = An. D 

Remark 2J: Equation (2.4) was shown in [9] and [1]. Its equivalent form was shown as (4) in 
[4], where U„ is equal to u^J1^ in (2.4). It may be seen that, owing to the introduction of the 
basic sequences, it is more convenient to use (2.4) than to use (4) in [4]. 

Substituting (2.4) into (2 J ) and comparing the i * row on both sides, we get the following 
corollary which was stated in [7]. 

Corollary 2.4: Let {u^} (i = 0,1, ...,*-1) be the Ith basic sequence in Cl(al9...,ak) = Q(A) and 
let {wj G Cl(A); Then {wj can be represented uniquely as 

k-l 

i=0 
(2.5) 

The following theorem gives a technique for generating F»L sequences by using the matrix 
other than the associated matrix. The method of proof is quoted from [9]. 

Theorem 2.5: Let Xn = (xnl9 xn2,..., x^'f be a vector over C and let B be a square matrix of 
order k over C. If 

\xI-B\ = f{x) = ** -otxk~l - — -ak-\x~~ak 
and 

then, for »sZ(f l t ) , 
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(1) (*„, )n G fi(«i> - ,«*) = **(/(*)) (/ = !.•••.*) or, simply, 

{^}„en(ai,...,a,) = a(/(x)). 
(Naturally, we can generalize the concept of an F-L sequence to that of an F-L vector sequence.) 

(2) 
B" = uik-»Bk-1 +u^Bk~2 + -+u2)B + u^I. (2.6) 

Specifically, 
A" = u<£-l)Ak-1 +uf-2Uk-2 + - + u<pA + uWl, (2.7) 

where {u^} is the j " 1 (J' = 0, ...,&-1) basic sequence in Cl(ax,...,ak) and A is the associated 
matrix of / (x) . 

Proof: By the Cayley-Hamilton Theorem, we have Bk = axBk~l H — +ak_lB+akI, whence 

5n+* = aiBn+k-1 + -+ak_lBn+l +akB". (2.8) 

Multiplying by XQ, we obtain Xn+Jfc = axXnJl.k_x + •••+ ak_xX„+x + akX„. This means that (1) holds. 
Denote B" = (fy),s,t y s t . Then (2.8) implies $»•*> = a^** - 0 + - +at_$"+1> +at^") . Therefore, 
{$">},, e Cl(f (x)). By (2.5), it follows that 

r=0 
which is equivalent to (2.6). • 

The following theorem is called the Theorem of Constructing Identities (TCI) in matrix 
form. TCI in polynomial form was proved in [6]. 

Theorem Z6 (TCI of matrix farm): Let 0(al5..., ak) = Cl(A). If 

holds, where nf,pj e Z(ak) and duej G C ? I = 0,..., s and j -0,..., /, then 
s t 

X ^ o l w ^ ^ / c o l w (2.10) 
i=o y=o 

holds for any {wn} e Q(A). Specifically, 
s t 

1=0 J=0 

holds for any {wj e Cl(A). Conversely, if (2.11) holds for any {wn} e Q(A), then (2.9) holds. 

Proof: Multiplying (2.9) by col wQ and using (2.3), we get (2.10), then (2.11). Conversely, 
if (2,11) holds for any {wj e Cl(A)9 then it holds for every basic sequence {u^} e Cl(A) (i = 0, 
..,, k -1). By using (2.5) and (2.7), we can prove that (2.9) holds. • 

The following lemma was proved in [6]. It can also be proved by using the TCI of matrix 
form. 

50 [FEB. 



APPLICATIONS OF MATRIX THEORY TO CONGRUENCE PROPERTIES OF km -ORDER F-L SEQUENCES 

Lemma 2.7: Let {i#>} (i = 0,'...,*-l) be the i* basic sequence in Q = Q(ah...9ak) = Q(A) and 
let {wj be any sequence in O. Then, for m9 n e Z(%), 

^ ^ E ^ ' V * * - (2.12) 

Remark 2.8: For convenience, we rewrite (2.12) as 

^ m ^ ^ c o l n v (2.13) 
where.^^(Mt^M^K..^), 

3. CONGRUENCE PROPERTIES OF F-L SEQUENCES 
In the subsequent discussions we deal with the integer sequences in Q(ah ...9ak) = Q(A) = 

Q(f(x))9 where al9al9...,ak G Z . The Cayley-Hamilton Theorem gives 

Ak = atAk~l +a2Ak~2 + — +ak_xA+akl. (3.1) 

Let M be the ring of integer matrices of order k. Let meZ+
9 m>\9 and let (m) be the prin-

cipal idea! generated by m over IU. For M9 N e M, define M^N (mod iw) if M-N e (w). Let 
{wn}-€ Q(i4). If there exists l e Z + such that 

# = / (mod w), (3.2) 
then we call the least positive integer f satisfying (3.2) the order of A modulo m and denote 
t = ordm(A). If there exist integers / > 0 and n0 > 0 such that 

ww+r = ww (mod m) iff » > #i0, (3.3) 

then we call {wj periodic moduli© m and call the least positive integer t satisfying (3.3) the 
perlcid ©f {wH} modulo m9 and denote t = P(m9wn). If #% = 0, we call {u>w} purely periodic. 
The following lemma is obvious. 

Lemma 3.1: 
(1) If an integer i > 0 satisfies (3.2), thee ordm(i4)|/. 
(2) If an integer f > 0 satisfies (3.3), then P{m9 wn)\t. 

Lemmm 3.2: Let 0 ( % ...9ak) = Cl(A). Thee ordw(i4) exists iff (#i, ak) = l. 

Proof: Assume that ordOT(J) exists. Thee (3.2) holds. Taking determinants on both of its 
sides and noting (2.2), we get (-l)**"1^ s l (mo^ m)- This implies (m9ak) = 1. Conversely, 
assume (m, %) = 1. Then there exists an integer b being the inverse, of ak (mod m). Whence, 
from (3.1), we have Ab(Ak~l-alAk~2 - ••• - % „ / ) = / (mod ai). This means that there exists a 
matrix B which is the inverse of A (mod m). Since among / , A9..., 4 ' , . . . (mod m) there are at 
most mkl different residues, there exist r > s > 0 such that Ar = As (mod m). Multiplying by B'9 

we obtain AT' = I (mod m)9 so ordw( J ) exists. • 

Theorem 3J: Let 0 = O(%...9ak) = £t(A) and let {#„} be the principal sequence in Q. If 
(m9 ak) == 1, then {uj is purely periodic and P(jn9 un) = ordm(A), 

Proof: From Lemma 3.2, V = ordM(i4) exists since (m9 ah) = 1. Then (3.2) implies that, for 
any n > 0, A!**' s yl11 (mod w) holds. From TCI, for any n > 0, i#w+r s i#w (mod w) holds. Thus, 
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{uj is purely periodic and, by Lemma 3.1, t = P(m, un)\f. Conversely, since any {wn} e fi can 
be represented linearly by {uj over the ring of integers (see [7], Lemma 2.5), the congruence 
wn+t = wn (mod nf) holds for any {wj e Q. Whence the converse of TCI implies that An+t s An 

(mod in) holds. Multiplying by A~n (from the proof of Lemma 3.2, A~l exists), we get (3.2). 
Thus, Lemma 3.1 implies f\t. Summarizing the above, we obtain t = f. D 

Corollary 3.4: Let Q = Cl(al9...,ak) = Cl(A) and let {uj be the principal sequence in O. If 
(m, ak) = 1, then any {wn} e O is purely periodic and P(m, wn)\P(m, un) = ordm(^4). 

For what sequences {wn} in Q,(A) besides the principal sequence will the equality P(m9 wn) = 
ordm(A) hold? To give an answer on the sufficient condition for the question, we introduce the 
Hankel matrix and Hankd determinant of {wn}9 which are defined by, respectively, H(wn) = 
(col w^_l 5 col ww+£_2,..., col wn) and detH(wn). 

Theorem 3.5: Let 0 = 0(a1?...,%) = Q(A). Let {uj be the principal sequence in O and let 
{wn} be any sequence in O. Assume (m,ak) = (m, detif(w0)) = 1. Then P(iff, w„) = P(m9 un) -
otdm{A). 

Proof: From (m9ak) = 1, Theorem 3.3, and Corollary 3.4, we conclude that {wn} is purely 
periodic and P(m9wn)\P(m9un) = ordm(A). Thus, we need only prove that P(m9un)\P(m9wn). 
Equation (2.13) gives wnH = An col wt. Whence 

(uW-i,..., wn+h wn) = 4(col wk_l9..., col wl9 col w0). (3.4) 

The equality (3.4) can be considered a system of linear equations in unknowns t$ (i = 0,..., 
k -1). The coefficient determinant of the system is det(col wk„h..., col wl9 col wQ) = det/7(w0). 
Since (iff, det H(w0)) = 1, we can solve un = u^~1^ = b^n+k-i + • • * + K-^i+ hwo (m^d m). Hence, 
P(m,un)\P{m,wn). D 

For more detailed consideration on the periodicity, we introduce the following concepts: Let 
{wj G Q(i4). If there exists s e Z* such that 

A'= cl (mod m), (3.5) 
where C G Z and (iff, c) = 1, then we call the least positive integer s satisfying (3.5) the constrained 
order of A modulo m, call c a multiplier of A modulo m, and denote s = ord^(^l). Corre-
spondingly, if there exist integers s > 0 and w0 > 0 such that 

w
n+s = <wn (mod iff) iff n > n0, (3.6) 

where c is an integer independent of if and (iff, c) = 1, then we call the least positive integer s sat-
isfying (3.6) the constrained period of {wm} modulo m, call c a multiplier of {wn} modulo m, 
and denote s = P'(m9 wn). If »0 = 0, we call {wj purely constrained periodic. We point out 
that the definition of "constrained period11 has generalized and improved the definition in [2]. 
Similarly to Lemma 3.1, the following lemma is obvious. 

Lemmm3.6: 
(1) If an integer s > 0 satisfies (3.5), then ord^(i4) \s. 
(2) If an integer s > 0 satisfies (3.6), then Pf(m9 wn) \s. 
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Clearly, if ordOT(^) exists, then ord'm(A) must exist [especially in the case c= 1 (mod m)]. 
Hence, from 3.2, we obtain 

Lemma 3.7: Let Q(ah ...,ak) = Q(A). Then otd'm(A) exists iff (m,ak) = l. 

By induction ony, we can easily prove 

Lemmm 3.8: Let s and c be the constrained period and a multiplier of {wj modulo /», respec-
tively; that is to say that (3.6) holds. Then, for j > 0 and n > nQ, we have 

wn+Js^cJwn (mod m). (3.7) 

Theorem 3.9: Let Q = Q(a1,...,aik) = Q(j4), let {wj be the principal sequence in O, and let 
{wj be any sequence in O. If (m, ak) = 1, then 
(1) {uj and {wn} are purely constrained periodic and Pf(m, wn)\P%m, un) = ord^(^). 
(2) us+k_t, where s = P'(m, un) = ord^(^), is a multiplier of {uj (mod m). 

Proof: 
(1) The proof is similar to the proofs of Theorem 3.3 and Corollary 3.4. 
(2) Take n = k -1 in the congruence un+s = cun (mod m) and note that uk_t = 1. D 

Theorem 3.10: Let {uj be the principal sequence in 0(a1?...,%) and let (m9ak) = 1. Denote 
P%m, un) = s, u^k_x = c, and ordm(c) = r. Then 
(1) P(m,urt) = rs. 
(2) The structure of {un (modm)} in a period is as follows: 

0, ..., 0, c, cuk9 cuk+l9 ..., «#,„!, (modw) 

flj Let P(m, un) = t. From w .̂, = MW (mod m) and Lemma 3.6, we have s\t. Then I = rxs. 
On the other hand, Theorem 3.9 implies that c is a multiplier of {uj (mod m). Equation (3.7) 
implies that 

Mn+JS = c\(modml (3.8) 

Taking y" = ordw(c) = r, we have %+„ = % (mod #»). Whence Lemma 3.1 gives t\rs9 that is, 
rxs\rs. Now we need only prove that rx=r. If this were not the case, then rx<r. Let A be the 
associated matrix of {uj. Theorem 3.9 implies that A' = c (mod m). Theorem 3.3 implies that 
A'=I (mod m)9 that is, A*' = (Asf = cf1/ s / (mod w). This contradicts ordw(c) = r . 

(2) In (3.8), let j = 0,1,..., r - 1 and let n = 0,1, ...;-$-1; then we have the required result. D 

Corollary 3.11: Let {uj be the principal sequence in 0(a1?..„,%) and let (# I ,%) = 1. Then 
P'(jn9 w„) is the least integer s such that $ > # - 1 and 

« , B ",+i • - • *W-2 = ° ( m o d w)- (3-9) 
As an example, we let {uj be the principal sequence in 0(1,1,1). By calculating, we obtain 
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K(mod7)} = {0?0;l?l?2?4?0?6?3?2?4?2?l?0?3?4?0;0;4?...}. 

Therefore, s = P'(7, un) = 16, c = MM = 4 (mod 7). Since 42 = 2 and 43 s 1 (mod 7), we obtain 
r = ord7(c) = 3\ and so t = P(7, un) = rs = 48. Furthermore, from Theorem 3.10, we can get 

un s 0 (mod 7)iffws 0,1,6,13 (mod 16), 
un = 1 (mod 7) iff n = 2,3,12,20,25,27,37,42,47 (mod 48), 

Another application example can be found in [8]. The above numerical results can be used to 
verify the following theorem. 

Theorem 3.12: Let 0 = 0(a l 5 . . . ,%)=0(^) = 0( / (x) ) , let {un} be the principal sequence in £2, 
and let {wj be any sequence in CI. Assume that (m9ak) -1. Denote P(m, un) = s, us+k_l = c, 
and ordm(c) = r. 
(1) If (m9 c -1) = 1, then, for all integers n > 0, 

§ > w + ; , - 0 (modm). (3.10) 
y-o 

(2) If (m, /(I)) = 1, then, for a0 = -1 and, for all integers « > 0, 

Z ^ y S / ( l ) - 1 ( c - l ) j ; ( f l b + f l i + ' - - + « / ^ ^ w (modin). (3.11) 
y-o y-o 

Specifically, 
2«Wy - / O r ^ l - c y (modiif) (i > 0). (3.12) 
y-o 

Proof: 
(1) From (1) of Theorem 3.9 and (3.7), we have 

r - l r-1 

(*- ! )Z w , + y , s (c™ O Z ^ i . = (^ - !K s ° (modm). 
y-o y-o 

Then (3.10) follows from the above congruence and (m, c -1) = 1. 
(2) From f(A) = 0, we have 

-f(l)I = f(A)~f(l)I 
= (A~l)((Ak-l + ~^A+I)~al(Ak~2 + <- + A+I)-<--a^ 

Whence, from (m, /(I)) = 1, we get 

y=o 

On the other hand, from Theorem 3.9 and (3.5), we have 

(A-T)(A'-l + A'-2 + - + A + I) = Aa-I = (c-l)I (modm). 
Whence 
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^(c-1)/(1)-*£ (a0 + at +... + ay)^*-W ( m o d m)9 

multiplying It by A", by TCI we get (3.11). D 

Note: Since (m, ak) = 1, the Inverse of A (mod m) exists, which Is 

4"1 = ak
l(Ak"1 - a ^ " 2 - . . . - A W / ) (mod m). 

Similarly, the sequence {wn (mod #w)} e 0(^4) can be extended to n < 0 by using the recurrence. 
Under this definition, the last theorem and the subsequent theorems, which hold for n > 0, will 
hold for » e Z . 

Corollary 3A3: Under the conditions of Theorem 3.12, let / = r$. If f«) (/w, c -1) = 1, or If (S) 
»f|(c-1) and (wi, / (I)) = 1, then 

JlWn*j = 1 X + / = 0 (mod!!!). (3.13) 

Proof: We have Z ^ w ^ = Z£oEy"o w^+y,. So (3.13) is proved by using (3.10) for (a) or 
by using (3.11) for (b). D 
Remark 3.14: 
(1) If we change P'(m9 un) = s and Ms+k^t = c so that j°'(iw? w j = s and c Is a multiplier of {wj 
modulo m9 respectively, then (3.10) and (3.13) still hold because (3.7) still holds. But at this time 
we cannot conclude that (3.11) holds. 
(2) If.neither conditions (a) nor (b) are fulfilled, (3.13) may not hold. For example: It Is dear 
that {»} Is the principal sequence in 0(2, -1) = 0(/(x)) . Thus, / ( I ) = 0. 

{n (mod 10)} = {0,1,2,3,4,5,6,7,8,9, (U,... 1 

Implies 5=10 and c = 1 (mod 10). Hence, neither condition (a) nor condition (b) Is fulfilled. We 
have 0 + 1 + 2 + — +9 s 5# 0 (mod 10), i.e., (3.13) does not hold. 

Theorem 3d5: Let {u„} be the principal sequence In Cl(al9...9ak) = Q(A) and (m9ak) = 1. Set 
P'(m, u„) = s. Then, for j > 09 we have 

m 
Uj^x s a[ V i (m o d m2l (3•14) 

(2) 
« / ^ " M V i y " ^ (modm2) (<>•£</£*-2). (3.15) 

/V«MJ^ Let {u^} (# = 0, ...,*-1) be the i* bask sequence In Cl(A). Clearly, i ^ = akt^~l) = 
akun. Eleeote us+k^l = c. We shall prove the theorem by Induction. For y = 1, (3.14) and (3.15) 
are trivial. Assume that both (3 J4) and (3.15) hold for/ We want to prove that they also hold 
for j +1. 

(1) From (2.12), we have %+i}^i = E£o MfsMs-M• Theorem 3.9 and (3.7) imply that 
ijD = cJ% = 0 and us^M = cu^ = 0 (mod m) for 1 < i < i - 1 . Then, by the induction hypothesis, 
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Hy+i),-! s u^us_t = akujs_xus_x »ak(af ty^u^ = a{u{tl (modm2). 
(2) Again from (2.12), we have uu+l)s+d = Sf="0

1^°^+J+/. From (3.9) and the recurrence 
(1.1), we obtain c = ug+k_l = akug^l (moc* m)- Whence, from (3.7), we obtain uJS+dH = cJud+i = 
(akus-i)Jud+i (m°d ^ ) and i/f} = ci$ = 0 (mod m) for 1 < i < k -1. It follows that 

£-1 

*w*fs ^%**+X ^°(fl*viV^+i (mod^2)-
1=1 

Since i^ = 0 for 0 < d < k - 2, the last expression can be rewritten as 
k-i 

u(J+l)s+d s uf\.s+d + (a^y^u^u^ (modw2). 
/=o 

Thus, by (2.12), we get 
% + i W = *J%*f + ta-i)y2W (mod w2). 

Since u^ = akus„v the conclusion follows by the induction hypothesis. D 

We point out that Theorem 3.12 and Corollary 3.13 have generalized Theorem 12 in [3], 
while Theorem 3.15 has generalized Theorem 7 in [3]. 

4. THE CASE OF k = 2 

For k = 2, the principal sequence un = u^ in Cl(a9b) satisfies UQ = 0, % = 1, and un+2 = 
aun+l +hun for n > 0. The 0th basic sequence i^0) satisfies i40) = 1, u(0) = 0. and the same recur-
rence. We assume h*0, since 6 = 0 is less interesting. Clearly, u^=bi4n_x. The associated 
matrix is 

-(T 5} 

r=rr- £j- (4.D 

Our conclusions for general k can be easily transferred to the case of k = 2, for example: 
Theorem 2.2 gives that, for « e Z , 

Theorem 2.5 give that, for n e Z, 

4" = 1 ^ + 51^7. (4.2) 

Corollary 3.11 given that, if (m, 6) = 1, then P'(jny un) is the least integer s such that s > 1 and 
w, = 0 (mod m). 

We do not enumerate all of them. Instead, we focus our mind on obtaining more interesting 
conclusions. Because of limited space, as examples we give only those for Theorems 3.12 and 
3.15. 

Theorem 4.1: Let {7^} be the Fibonacci sequence, i.e., the principal sequence in O = 0(1,1), and 
let {wj be any sequence in O. Let p > 3 be a prime. Then, for all integer n e Z: 
(1) 

^n +Wf»P
 +Wn+2P +"W3p = 0 (modF^). (4.3) 
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(2) 
p-l 

Z>»+/
 s ( ^ - i - !K + i (modF^). (4.4) 

Proof: In Theorem 3.12, take m = Fp. Then, from (4.2), Ap = Fp_x (mod m\ where, as is 
well known, (m, F^) = (Fp9 F^) = 1. Lemma 3.6 Implies P'(m, F„) = s\p. Since s> 1 andp Is 
prime, we have s = p. And the multiplier c s f ^ s F ^ (mod m) (or, It can be obtained by 
Theorem 3.9 directly). It Is well known that 

FL-Fn+lFn-F^{-\f. (4.5) 

Whence c2 = i^.j = ( - i y = -1 (mod m). Thus, r = ordw(c) = 4. From Theorem 3.12: 
(1) To prove (4.3), it is sufficient to prove d = (m, c -1) = (F ,̂ Fp+1 -1) = 1. Let p = 2q +1 

and let Z,„ be the »* Lucas number. Then F = Fq+1+F2 and 

^P+i -1 = ^ i V i - l - F
q+l(Fq+l+2iV) - H)'(iv2

+, - ^ - F2) 
\3Fq+lFq+F2 for2\q, 

~ [2F9
2
+1 + Fq+1Fq - F2 otherwise. 

For even q, 

d = (F2
+l + F], 3Fq+lFq + F2) = (F?

2
+1 + F?

2, Fq(3Fq+1 + Fq)). 

Since (F?
2
+1 + Fq

2, Fq+1) = (F2, Fq+l) = 1 and, by the same reasoning, (Fq
2
+1+Fq

2, Fq) = l, we have 
d = (Fq

2
+1 + F2,3Fq+1+Fq). 

For odd q, we also have 

d = (F2
+l+F2,2F2

+l + Fq+lFq-F2) = (F2
+1+F2, Fq+1(3Fq+1 + F,)) 

= (^2
+ 1+^,3F9 + 1+F?). 

Thus, 
d = (F9+1(^+1 - 3Fg), 3Fg+1 + F,) = (F?+1 - 3F?, 3Fg+1 + Fq) 

= (Fq+1 - 3Fq, \0Fq) = (Fq+l - 3Fq, 10) = (-Zg_i, 10). 

The fact that {L„ (mod5)} = {2,1,3,4,2,1,...} implies that (Lq_h 5) = 1. And the fact that {L„ 
(mod2)} = {0,1,1,0,1,1,...} implies that 2\Lq_x iff 3\(q-\), i.e., 3 |(p-3)/2. Whence, 3\p. 
This is also impossible. Hence, d = \. 

(2) Here / (* ) = x2 - x -1 and / ( l ) = - 1 . Whence (m, / ( l ) ) = 1 holds. Hence, (4.4) holds 
by (3.11). D 

The following theorem implies a possible generalization and an alternative proof of Theorem 
3.15. 

Theorem 4.2: Let {«„} be the principal sequence in CI = Q.(a, b) = Q(A) and {wn} be any 
sequence in Q. Assume (m, b) = \. Denote P'(m, un) = s. Then, for j > 0 and d > 0, we have 

*Vi = v l«i-iwi + (bu,-i)J~lU«, ~««,-iK (modm2). (4.6) 
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(2) 
wjs+d s ( K - i ) X + KH-I)J"\WM (mod m2). (4.7) 

Proof: From (4.2), As = ^A+bu^L Since m\us, we have Ajs = (bu^ 1+j(bus_$~lusA 
(modm2). Whence 

i*"-** = (bu^y.A* + Kbu^y^u^1 (mod w2). (4.8) 

If rf> 03 then (4.7) follows from TCI. For </ = - 1 , from A2 ~aA-hi = 0, we get A(A-aI) = A 
(modm2). Whence (wi,ft) = l gives ^ s j ' ^ - o f ) (modiw2). And (4.8) becomes ^ " ^ 
b^u^A + (hu^y^QUs - oif^)/ (mod w2). Thus? (4.6) follows from TCI. D 

It is easy to see that when {wj - {uj and d = 0 the conclusions of the last theorem agree 
with those of Theorem 3.15. 

REFERENCES 

1. U. Cerruti & F. Vaccarino. "Matrices, Recurrent Sequences and Arithmetic.11 In Applica-
tions of Fibonacci Numbers 6s53-62. Ed. G. E. Bergum et al. Dordrecht: Kluwer, 1996. 

2. L. Somer. "On Even Fibonacci-Pseudoprimes." In Applications of 'Fibonacci Numbers 4% 
277-88. Ed. G. E. Bergum et al. Dordrecht: Kluwer, 1991. 

3. M. E. Waddill. "Properties of a M)rder Linear Recursive Sequence Modulo m." In Appli-
cations of Fibonacci Numbers €t 505-19.' Ed. G. E. Bergum et al. Dordrecht: Kluwer, 1996. 

4. M. E. Waddill. "Using Matrix Techniques To Establish Properties of i-Order Linear Recur-
sive Sequences." In Applications of Fibonacci Numbers 5:601-15. Ed. G. E. Bergum et al. 
Dordrecht: Kluwer, 1993. 

5. M. E. Waddill. "Using Matrix Techniques To Establish Properties of a Generalized Tribo-
nacci Sequence." In Applications of Fibonacci Numbers 4:299-308. Ed. G. E. Bergum et 
al. Dordrecht: Kluwer, 1991. 

6. Chizhong Zhou. "Constructing Identities Involving A1*1-Order F-L Numbers by Using the 
Characteristic Polynomials." In Applications of Fibonacci Numbers 8:369-79. Ed. F. T. 
Howard. Dordrecht: Kluwer, 1999. 

7. Chizhong Zhou. "A Generalization of the'All or None1 Divisibility Property." The Fibonacci 
Quarterly 35*2 (1997): 129-34. 

8. Chizhong Zhou. On the k^ -Order Derivative Sequences of Fibonacci and Lucas Polyno-
mials.11 The Fibonacci Quarterly 34.5 (1996): 3 94-408. 

9. Chizhong Zhou. Fibonacci-Lucas Sequences and Their Applications (in Chinese). MR 
95m: 11027. Hunan: Hunan Science & Technology Press, 1993. 

AMS Classification Numbers: 11B39, 11B50, 11C20, 11B37 

58 [FEB. 


