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1. STERN'S D I A T O M I C A R R A Y 

Each row of Pascal's triangle is formed by addition of adjacent elements of the preceding 
row, producing binomial coefficients and counting combinations. Each row of Stern's diatomic 
array is formed by addition of adjacent elements of the preceding row, but interspersed with 
elements of the preceding row. In this case, the rows of the table will be shown to count certain 
Fibonacci representations. 

Starting with 1 and 1, form, a table in which each line is formed by copying the preceding 
line3 and inserting the sum of consecutive elements: 1, 1; 1, 1+1, 1; 1, 1+2, 2, 2+1, 1; 
The body of the table contains Stern's diatomic array, sequence A049456 in [10]. Actually, 
this arra3^ has been called Stern's diatomic series in the literature [9], [11], but it should have 
been called the Eisenstein-Stern diatomic series by earlier authors because Stern's introduction 
refers back to Eisenstein. 

1 1 
1 2 1 
1 3 2 3 1 
1 4 3 5 2 5 3 4 1 
1 5 4 7 3 8 5 7 2 7 5 8 3 7 4 5 1 
1 6 5 9 4 117 103 118 135 12 7 9 2 9 7 125 13 8 113 107 114 9 5 6 1 

If an,k is the kth term in the nth line, k = 1,2, . . . , n = 0 , 1 , 2 , . . . , 

a«,2m = «n~l,m + ^n-l ,m+l a n d «n,2m-l = Q>n-l,m- (1-1) 

Lehmer [9] reports that Stern took the initial line 1, 1 as the zerot/l line and proved, among 
others, the following properties: 

1. The number of terms in the nth line is 2n + 1, and their sum is 3 n + 1. 
2. The table is symmetric; in the nth line the kth term equals the (2n + 2 — k)th term. 
3. Terms appearing in the nth line as sums of their two adjacent terms are called dyads. 

There are 2n~~1 dyads and 2 n ~ 1 + 1 non-dyads on the nth line. The dyads a occupy 
positions of even number k (called rank) on the line. 

4. Two consecutive terms, a and 6, have no common factor. 
5. Every ordered pair (a, b) occurs exactly once as consecutive terms in some line of the 

table. 
6. If a and b are relatively prime, the pair of consecutive terms (a, b) appears in the line 

whose number is one less than the sum of the quotients appearing in the expansion of a/b 
in a regular continued fraction. 
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Lehmer [9] then uses the quotients of the continued fraction expansion of r\jt2 to place the 
consecutive terms r\ and r^ into the table by computing both the line number and the rank of 
r i . Further, he shows that the largest dyads in the nth line, n > 2, have the value F n + 2 , the 
(n + 2)nd FibQnacci number. Lehmer's results for the line number and rank are summarized 
in Theorem 1.1. 

T h e o r e m 1.1: If consecutive terms r\ and r<i occur on the nth line of Stern's diatomic array 
and if the continued fraction for ri/r2 is [<Zi; </2, <Z3J «• •»<Zm-2> r m - i ] , then 

n = Qi + Q2 + Q3 -\ h q-m-2 + r m - i - 1, (1.2) 

and if m is odd (even), r\ is the left (right) neighbor of r 2 in the first (second) half of line n. 
If rn is odd, the position number k (rank) of T\ in the first half of line n is 

k = 2qi"^q2^—I"0m-2 _ 2qi~*"q2~*r'"+qrn-s 4 - . . . — 2qi~*~q2 -t- 2qi (1.3) 

More recently, Calkin and Wilf [6] use Stern's diatomic array to explicitly describe a 
sequence b(n) (sequence A002487 in [10]) such that every positive rational appears exactly 
once as b(n)/b(n + 1), 

{b(n)} = {1 ,1 ,2 ,1 ,3 ,2 ,3 ,1 ,4 ,3 ,5 ,2 ,5 ,3 ,4 ,1 ,5 ,4 ,7 , . . . } . (1-4) 

It is shown in [6] that b(n) counts the number of hyperbinary representations of the integer 
n, n > 1; that is, the number of ways of writing n as a sum of powers of 2, each power being 
used at most twice, 6(0) = 1. Here, we apply Stern's diatomic array to counting Fibonacci 
representations. 

2. F I B O N A C C I R E P R E S E N T A T I O N S 

Let R(N) denote the number of Fibonacci representations [4] of the positive integer N\ 
that is, the number of representations of N as sums of distinct Fibonacci numbers F&, (or 
as a single Fibonacci number F&), k > 2, written in descending order. We define U(0) = 1. 
The Zeckendorf representation of JV, denoted Zeck N, is the unique representation of N using 
only non-consecutive Fibonacci numbers F&, k > 2. The largest Fibonacci number contained 
in N will be listed first in Zeck N. Whenever R(N) is prime, Zeck N uses only Fibonacci 
numbers whose subscripts have the same parity [3], [5]. For that reason, we are interested in 
integers N whose Zeckendorf representation uses only even-subscripted Fibonacci numbers; we 
call such N an even-Zeck integer, denoted JV", sequence A054204 in [10]. The j t h even-Zeck 
integer N = N(j) can be written immediately when j is known. 

We list early values R(N) for consecutive even-Zeck integers N, augmented with R(0) = 1, 
sequence A002487 in [10]: 

j 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 . . . 
N(j) 0 1 3 4 8 9 11 12 21 22 24 25 29 30 32 33 . . . (2.1) 

R(N(j)) 1 1 2 1 3 2 3 1 4 3 5 2 5 3 4 1 . . . 
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The even-Zeck integers N(J) are enumerated below for j = 1,2, . . . ; we define N(0) = 0. 

3 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

binary 
1 
10 
11 
100 
101 
110 
111 
1000 
1001 
1010 

powers of 2 
2°  
21 

21 + 2°  
22 

22 + 2°  
22 + 21 

22 + 21 + 2°  
23 

23 + 2°  
23 + 21 

Zeck N(J) 
F2 
F4 

F4 + F2 

F6 
FQ + F-2, 
F6 + F4 

FQ + F4 + JF*2 
•̂8 

•2*8 + -^2 
^8 + ^4 

m i 
3 
4 
8 
9 
11 
12 
21 
22 
24 

L e m m a 2 .1 : If j is represented as the sum of distinct powers of 2 in descending order, 
j = 2r + 2s + j- 2W, r > 5 > w, then the j t h even-Zeck integer N = N(j) is given by Zeck 
N(j) = F2(r+i) + -̂ 2(5+1) H 1" -^(w+i)- I n short, replace the binary representation of j in 
the powers 2p,p = 0 , 1 , . . . , by i*2(p+i) to find N = JV"(j). 

Proof: The short table displays Lemma 2.1 for j = 1,2, . . . , 1 0 . The next even-Zeck 
integer N(j + 1) will be formed from the binary representation of (j + 1). • 

L e m m a 2*2. (i) If Zeck N = N(j), j > 2, has F2 for its smallest term, then N-1 = N(j -1), 
but N + 1 is not an even-Zeck integer. 

(ii) if Zeck N = N(j), j > 2, has F2c, c > 2, for its smallest term, then JV> 1 = N(j + 1), 
but N — 1 is not an even-Zeck integer. 

(iii) The even-Zeck integer N* preceding N = N(j), j > 2, with F2cj c > 1, for its 
smallest term, is N(j - 1) = N* = N - F2c^2 - 1. 

Proof: Let c = 1, and take # ( j ) = F 2 n + • • • + F2p + F2, p > 2, n > 3. Then 
JNT — 1 = N(J - 1), but N+l = F2n H h F 2 p 4- F 3 is not an even-Zeck integer, illustrating 
(i). Further, N(j-1) = N-F0-1 = N- -F2c-2 - 1,c = 1, satifying (iii). 

Let JV(j) - F 2 n + .-• + F 2 c + 2 p + F2c, c > 2 , p > 1, n > 3. Then JV(j) + 1 = F2n + ••• + 
F2C+2 + *2c + *2 = N(j 4- 1), but # ( j ) - 1 = F2n + • • • + F 2 c + 2 p + F 2 c - 1 - F2fl + . • • + 
F2C+2p + (F2C-1 H I- F7 + F5 4- F3) , not an even-Zeck integer, as in (ii). Part (iii) follows 
from 

N(j) ~ F 2 c _ 2 - 1 = F2n + . . • + F 2 c + 2 p + F2c - F 2 c „ 2 = 1 
= F2n + . . . + F 2 c + 2 + (F 2 c - i - 1) 

= F2n + • • • + *2c+2p + (*2c-2 + * ' ' + ^6 + F 4 + F2) = N(j - 1) = N*. D 
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Cut the list from R(N) given earlier in (2.1) at the boundary l 's to form rows 

(1 1), ( 1 2 1), ( 1 3 2 3 1), ( 1 4 3 5 2 5 3 4 1 ) , . . . , 

where we keep the leftmost 1 for symmetry. Each row, after the first, includes the list of R(N) 
for the preceding row, interspersed with sums of successive pairs of adjacent terms from the 
preceding row: 

(1, 1), (1, 1 + 1, 1), (1, 2 + 1, 2, 2 + 1, 1), (1, 1 + 3, 3, 3 + 2, 2, 2 + 3, 3, 3 + 1, 1), . . . . 

We recognize the first four lines of Stern's Diatomic array. Our nth row, 1, n, (n — 1), . . . , 
contains 1 followed by the number of Fibonacci representations R(N) for consecutive even-Zeck 
integers N,F2n < N < i^n+i — 1 where R(F2n) = n, n > 1. We next prove that this array is 
indeed the same as Stern's diatomic array. Lemma 2.3, which allows us to shift subscripts, was 
Hoggatt's conjecture and was proved by Klarner [8, Thm. 4]. Lemma 2.4 is part of Lemma 11 
from [4]. 
L e m m a 2.3: If sequence {hn} satisfies the Fibonacci recurrence bn+2 = bn+i + bn, then 
R(bk — 1) = R(bk+i — 1) for k sufficiently large. 

L e m m a 2.4: Let N be an integer whose Zeckendorf representation has F2c, c > 2, as its 
smallest term. Then R(N) = R(N - 1) + R(N + 1). 

T h e o r e m 2 .1 : Let the nth row of an array list the number of Fibonacci representations R(N) 
for consecutive even-Zeck Integers N, F2n < N < -FWfi — 1- Let bnjk denote the 
kth term of the nth row, n = 1, 2, 3, . . . , where &n,i = 1, and 6 n ^ = R(N(jnik)) for 
j n k = 2n~1 + k - 2, Jfe = 2 , 3 , . . . , 271"1 + 1. Then 6n>fc = an_ijfe, the kth term in the (n - l)st 

line in Stern's diatomic array, n = 1,2, . . . , and k = 1 ,2, . . . , 2 n _ 1 + 1. 

Proof: Interpret the leftmost column (k = 1) of l 's as R(F2n-i — 1) = 1, where F2n-i — 1 
is the even-Zeck integer preceding F 2 n according to Lemma 2.2 (iii) with N = I<2n,Ti > 1. In 
particular, 6i;i = 1 = ao,i, and 6i52 = 1 = ao,2- We show that the two arrays have the same 
rule of formation by establishing 

bn,2m = &n-l , ra + & n - l , m + l a n d 6 n , 2 m - l = & n - l , m ? fl>2. (2 .2) 

(a) We first prove bn^m = &n-i,m + 6n-i,m+i for n > 2, m = 1 , . . . , 2 n ~ 2 . The case m = 1 

is satisfied because 6n- i , i = 1 by definition, and 6n-i,2 = R(N(2n~2)) = R(F2(n-i)) = n — 1 

from above. For m = 2 , . . . , 271"2, N(j) = JV(jn>2ro) = F2n + • • • + F2c+2p + F 2 c , c > 2,1 < 
p < n — 3, when n > 3 because c = 1(F2) is not present for even k < 2m in row n. Also, 
\>c+p; hence, 1 < p < n- c < n- 2 for n > 3; if n = 2,p = 0 and c = 2. From Lemma 2.2, 
N* = N(j - 1), j\T = N(j) = iV(jn j 2 m), and (J\T + 1) = J\T(j + 1) are consecutive even-Zeck 
integers. Hence 6n,2m-i = R(N*),bni2m = J?(iV), and 6nj2m+i = -R(iV+ 1) are consecutive 
entries in the nth row. Since N(j-1) and iV(jF+l) are each a term in some Fibonacci sequence, 
apply Lemma 2.3 to shift subscripts down 2 in the expressions for R(N(j+l)) and R(N(j-l)). 
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R(N(j + 1)) = R(N + l) = R(F2n + .- + F2c+2p + F2c + (F3 - 1)) 
- R((F2n-2 + . . . + F2 c + 2 p_2 + F2c_2 + Ft) - 1) 

= R(F2(n-l) +'"+ ^2<H-2p-2 + F2 c_2) = R(M), (2.3) 

which is in the (n — l)st row, and M, the argument given above, is an even-Zeck integer. The 
binary representation of M — F2n^2 + • • • + F2c+2p-2 + F2c^2, c > 2, is obtained from 
the binary representation of N by a right-shift by one position (see Lemma 2.1). Because 
N = N(jn,2m), one therefore finds M = N(jn-i,m+i)l hence by definition R(M) = 6n-i,m+i. 
Prom Lecama 2.2 (iii) (with c -> c — 1 > 1), and Lemma 2.3, 

J2(JVtf - 1)) = R(N*) - i?(# - F2 c - 2 - 1) 

= R(F2n-.2 + • • • + F2C+2P-2 + F 2 c - 2 ~ F2 c-4 ~ 1) = «(M*) (2.4) 

where M*, defined as the argument of the last R, is the even-Zeck preceding M. Hence, 
M* = N(jn-iim), and by definition, R(M*) = 6n™ijm. What we have to prove now is 
R(N) = R(M*) + R(M). For this we want to use Lemma 2.4 with N-> N. We know already 
that R(N + 1) = R(M) but N — 1 is not an even-Zeck integer for c > 2. However, we now 
show that R(N - 1) = ^(M*). 

fl(J\T - 1) = R(F2n + • • • + F2 c + 2 p + F2c - 1) 

= E(i?
2n_2c+2 + 1" i*2p+2 + -̂ 2 — 1) = ^(iT) 

by shifting subscripts down (2c - 2). Recalculate R(N*) as 

R(N(j - 1)) = R(F2n + • • • + F2 c + 2 p + F2c - F2c™2 - 1) 
= fl((*2« + • • • + ^2c+2p + *2c-l - 1) 

= U(*2»-2c+2 + • • ' + ^p+2 + Fl - 1) = fi(A-), 

by shifting subscripts down (2c — 2). Thus, 

R(N - 1) = iJ(J\r(j - 1)) = R(M*). (2.5) 
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Therefore, 6n,2 m = K-i,m + K-i,m+i, and part (a) of the proof is finished. 
(b) We prove 6n,2m-i = &n-i,m fo rn > 2,m = 1 , . . . , 2 n " 2 . For m = l,6n>i = 1 = 6n- i , i 

by definition. If m = 2 , . . . ,2 n ~ 2 ,6 n ) 2 m-i = #(JV"(in,2m-i)) = E(iV"*) if we use the same 
notation as in part (a) of the proof. There we have already shown R(N*) = R(M*) = 6 n - i , m , 
which finishes part (b) of the proof. Together with the input &i,i = 1 = &ij2 we have shown 
that6n,jb = o n - i > j b , n = l , 2 , . . . , a n d f c = l > 2 , . . . , 2 f l - 1 + l . • 

Corol la ry 2.1.1: If N is an even-Zeck integer such that Zeck N ends in F 2 c , c > 2, and if N* 
is the preceding even-Zeck integer, then R(N*) = R(N - 1 ) . Also, iJ(JV(j - 1 ) ) = R(N(j) - 1 ) 
with N = N(j ) . 

Proof: See equations (2.4) and (2.5). • 

T h e o r e m 2.2: Let N = N(j) be the j t h even-Zeck integer, j = 0 , 1 , 2 , . . . , with N(0) = 0. If 
R(N) = 6nfc with bUik defined in Theorem 2.1, then N = N(jn,k) with j n > f c = 2T l-1 + fc - 2, fc = 
1,2, . . . , 271"1 + 1, for n = 1,2, N(j),j > 1, is obtained by replacing powers 2P in the dual 
representation of j n ^ by F2(p+i); if j = 0, then JV = 0. Alternately, N = F 2 n + X"(ik - 2), 
where ^(fc - 2) is the (k - 2)nd even-Zeck integer. 

Proof: Apply Lemma 2.1 to Theorem 2.1. • 
To illustrate Theorem 2.2, R(N) = 7 = 65,3 appears as the 8th term in the 5th row; 

n - 2 = 8 - 2 = 6 = 22 + 21, yielding N = F2.6 + F 2 ( 2 + 1 ) + F2{1+1) = F1Q + F6 + F 4 = 66, and 
iJ(66) = 7. The earlier R(N) = 7 = 65j4 in that row occurs for TV = F1Q + FA = 58. 

Since the nth row of the array for R(N) is the (n — l ) s t line of Stern's array, several prop-
erties of Fibonacci representations of even-Zeck integers N correspond directly to properties 
given for elements of Stern's diatomic array from Section 1. 

1. There are 2n~~1 even-Zeck integers N in the interval F 2 n < JV" < F 2 n + i — 1. There are 
2 n _ 1 + 1 terms R(N) in the nth row, whose sum is 3 n _ 1 + 1. 

2. The table of R(N) values is symmetric; in the nth row, the kth term equals the (2 n ~ 1 + 
2 - k)th term. Compare with R(F2n + M) = R(F2n+i - 2 - M) , 0 < M < F2n-i, n>2, 
formed from Theorem 1 of [4] by replacing n with 2n. 

3. Dyads R(N) correspond to Zeck N ending in JP2C, c > 2; excepting the first column, 
non~dyads R(N) have Zeck N ending in F2 = 1. The dyads have even term numbers. 

4. For even-Zeck N, consecutive values for R(N) are relatively prime. Consecutive values 
for even-Zeck integers N appear in relatively prime pairs, (3,4), (8,9), (11,12), (21, 22), 
(24 ,25) , . . . . 

The largest value [2] for R(N) in row n is -Fn+ij corresponding to Fn+2 as the largest dyad 
in the nth line as given by Lehmer [9]. Notice that Lemma 2.3 appears in the table as the 
columns of constants, and the central term in each row is 2. Properties 5 and 6 are explored 
in the next section. 

3 . S T E R N ' S D I A T O M I C A R R A Y A P P L I E D T O 
F I B O N A C C I R E P R E S E N T A T I O N S 

We can find many even-Zeck integers N having a specified value for R(N) by applying 
Theorem 1.1. According to Lehmer [9], Stern gives Euler's #(m) as the number of times that 
an element m appears in the (m - l)si and all succeeding lines of Stern's diatomic array; this, 
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of course, is our mth row, where values for R(N) are the elements, and Euler's #(m) is the 
number of integers not exceeding m and prime to m. We express R(N) as the sum of a pair 
of relatively prime integers r\ and r2, and then use the Euclidean algorithm to write quotients 
used in the continued fraction for r i / rg . The row and column numbers for R(N) — bn^ as 
well as the Zeckendorf representation of N, can be written from those same quotients. 

T h e o r e m 3.1: Let R(N) = hnjk as in Theorem 2.1. Let R(N) = n + r2, n and r2 relatively 
prime. Use the Euclidean algorithm to write r\ = gir2 + 3̂? r2 = 92^3 + ^4,^3 = q^r^ + 
r 5 , . . . , r T O _2 = qm~2-\-rm„i+rm, rm = 1. Then n / r 2 = fei;g2,03,-•• ,gm-2,rTO_i], a regular 
continued fraction. The dyad value R(N) occurs in row n, where 

n = Qi + m + qs + • • • 4- qm-2 + r m _ i + 1; (3.1) 

R(N) occurs between n and r2, in columns k and (2 n ~ 1 + 2 — &), fc > 2, where 

jfe = 2«1+«*+-"+*»-2+i - 2 « 1 + « a + " , + ^ - » + 1 + 2 g i + g 2 + 1 + 2*1+1,ra odd, (3.2a) 

.or k = 2qi~¥q2-j""+qrn-2+1 - 2*1 +«2 +-+*»-»+ 1 + 2 g i + 1 + 2,m even, (3.2b) 

Proof: Equation (3.1) is (1.2), adjusted by adding 2, since our row numbers are one more 
than Stern's line numbers, and we are one row farther out. Equation (3.2a) is (1.3) when 
m is odd, taken one row farther out; k is twice the column number of r% in the (n — l)st 

row. If v\ is a dyad and thus has an even column number, let r2 = &n-1,2^4-1 • If T\ is 
the left neighbor of r2, then n = 6n-i,2w and 6n,& = n 4- r 2 = &n,2(2w);fe is twice the 
column number of T\ as (3.2a). If r i is the right neighbor of r2, then n = &n-i,2«H-2j and 
6n,& = ^2 + n — 6n-i,2ti;+i + 6n-i,2w+2 = &2(2w+i) = &n,4w+2, so that k is 2 more than twice 
the column number of n as in (3.2b). • 

L e m m a 3.1: Let bn,k be the kth term of the nth row of the array of Theorem 2.1. The term 
directly below 6n,& in the (n + p)th row is bn,k = &n+p,2i»(jfe-i)+i- I n particular 

&i,i = fti+fn-ij^^-^i-ij+i = &n,i = l , n > 1; 

&1,2 = & l + ( n - l ) , 2 ^ - 1 ( 2 - l ) H - l = & n , 2 » - i + l = l > n ^ *> 

&p,2 = 6p+(n-p),2'»-P(2-l)+l = K,2™-P+1 =P,n> p,p = 1 , 2 , . . . . (3.3) 

Proof: Lemma 3.1 restates Theorem 1 from [9]: If N has rank Rn in the nth line, it 
appears directly below in the (n + k)th line with rank Rn+k = 2^ (1^ — 1) + 1. D 

Define a zigzag path through the array of Theorem 2.1 as movement down and right 
alternating with movement down and left. Define ZR(y) as a movement down y rows and 
right 1 term; ZL(x), down x rows and left 1 term. Prom Lemma 3.1, 

ZR(y) :b w,t ~* &t»+y,[2»(t—1)+1]+1 — bw+y,2y(t—l)+2> 

ZL(x) :hWit -» 6to+x,[2*(*-i)+i]-i = bw+x,2*(t-i)- (3-4) 
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L e m m a 3.2: Let R(N) = 6n,fc = n + r2, n/r2 = fei; q2, 93,••• , 3m-2, r m _ i ] , r m _ i > 2, where 
7*1 is a dyad, r i > r2. If 6n,fc is on the left side of the table, the zigzag path from &i5i to 6n>fc is 
ZR(rm-.i - l)ZL(qm-2) • • .ZR(q2)ZL(qi)ZR(l), where T\ is on the left of r2, m is odd, and 
k is given by (3.2a); or, ZR(rm-i - l ) Z L ( g m _ 2 ) . . . ZR{qi)ZL{\), where n is on the right of 
r2, m is even, and k is given by (3.2b). 

If bUik is on the right side of the table, the zigzag path from &i)2 to bHik is 
ZL(rm-i - l)ZR(qm-2).. • ZL(q2)ZR(qi)ZL(l), for n on the right of r2, m odd; or, 
ZL( r m _ i - l)ZR(qm-.2)... ZL{qi)ZR{\), rx on the left of r2, m even. R(N) = 6n,2n-i+2_fc 
for A; as in (3.2a) or (3.2b) as m is odd or even. 

Proof: On the left side of the table, the path from &i?i begins ZR(rm-i — 1) to brrn_li2 

followed by ZL(qm-.2). If T\ is on the left of r2, the path from b\^\ will end with a move ZR(1) 
to R(N), preceded by ZL{a\) to r\\ m is odd. If r\ is on the right of r2, the path from b\,\ to 
bHik ends .. .ZR(qi)ZL(l), so that m is even. Suppose r\/r2 = [ a i ; a 2 , a3 , r m _ i ] . The zigzag 
path from 6 M to bn,k is ZR(rm-i - l)ZL(a3)ZR(a2)ZL(ai)ZR(l): 

h,l - > ftrTO-i,2 - > fto3+rm_i,2°3(2-l)+0 ~* &a 2 +a 3 +r m _ i ,2 a 2 ( 2 a 3 - l ) + 2 

"""* ^ a i + a 2 + a 3 + r m _ i , 2 a i ( 2 a 2 + 0 3 - 2 a 2 + 2 - l ) + 0 

- * ^ a i + a 2 + 0 3 + r m _ i H - l , 2 ( 2 a i + 0 2 + a 3 - 2 a i + ° 2 + 2 o i _ i ) + 2 

= = "n,2°i+°2+a3+1—2°i+02+1+2°i+15 

k is given by (3.2a), a\ = qi, i = 1,2,3. This pattern continues fo rm odd. Suppose r\/r2 = 
[oi;a2,rT O_i]. The zigzag path from b^i to bUjk is Zi?( r m _i - l )ZL(a 2 )Z i i (a i )ZL( l ) : 

&1,1 "> ftrm_i,2 - > 6 o 2 + r m _ i , 2 « 2 ( 2 - l ) + 0 ""> &a i+a 2 +r m _ i ,2« i (2«2- l )+2 

~~*" ̂ a i + a 2 + r m _ i + l , 2 (2 a i+ a 2 -2 a i - [ -2 - l )+0 = & n , 2 0 i + a 2 + i - . 2 « i + i + 2 ; 

fc is given by (3.2b), a« = (ft, i = 1,2. The pattern continues for m even. 
The situation on the right side of the table is similar. The path from &i)2 to 6n,& on the 

right side is the mirror image of the path from &i?i to bnyk on the left. D 

L e m m a 3.3: Let R(N) = bn,k = n + r 2 , r i / . r 2 = fai; 92,03, . . . , g m _ 2 , r m _ i ] , r m _ i > 2. If 
r\ is the left neighbor or r2 in the (n — l ) s t row, and m is odd (even), the ordered sequence, 
r i , i^JV^r-j, appears in the nt / l row on the left (right) side of the table. 

Theorem 3.2 generalizes the zigzag paths of Lemma 3.2 to JRSJftS... patterns, where 
9t(g) means to write the next (q) even-subscripted Fibonacci numbers; £(q), omit the next (q) 
even-subscripts. Note that r\ and r2 are not ordered. 

T h e o r e m 3-2: Let the dyad R(N) = n + r 2 , r i and r2 relatively prime, appear in the nth 

row as in Theorem 3.1. If R(N) is between n and r2 on the left side of the table, Zeck JV" is 
given from n/r2 = [qi\q2jg3,...,qm-2,rm_i],rm_i > 2, by the 9tC9tC. . . pattern 

9*(l)£(r r o- i - l )9t (gm^.2 )£(gm_3) . . . JK(«i)£(l), m odd; (3.5) 

• • .9t(g2)£(gi)£(l) , m even. The first Fibonacci number written is F2n. 
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Proof: Let 2q correspond to i*2(p+i) as in Lemma 2.1; R(N) = bUik is the term appearing 
(k - 2) entries to the right of 6n?2 = R(F2n) where F2n = N(2n~1). Prom (3.1) with (3.2a) 
or (3.2b), the highest power of 2 in k has exponent (qt + q2 H h qm-2) = (n — r m _ i — 1). 
Prom (3.2a), 

ft — 2 = ( 2 9 l + 9 2 _ l — H g m - 2 + 1 _ 2ff i+92+—+gm-3+i _j_ . |_ /2?i+92H-g3+i _ 2 0 i + 0 2 + i \ 1 ( 2 g i + 1 — 2) 

__ 29l+02+—+«m-3 + l(29™-2 — 1) -j f- 2^1+^2 + l /2?3 _ ] \ _|_ 2(2^1 ~ l ) 

_- 2?1+?2H hgm-3 + 1 /2?m-2-l _|_ |_ 2 -f 1) -f J- 2Ql+q2 + 1(2q3~1 _|_ |_ 2 4- l) 

+ 2(29 1"1 + . . . + 1) 

which contains qm-2 consecutive powers of 2 beginning with 2 9 l + 9 2 + " " + g m - 2 , followed by qm-3 
consecutive missing powers of 2, followed by qm-4 consecutive powers of 2 , . . . , ending with qi 
consecutive powers of 2, with the one final term 2° missing. (Recall that k is even, since R(N) 
is a dyad.) In the sum (2 n ~ 1 + (k — 2)), the leading exponent in each block of consecutive 
powers of 2 results from successively subtracting r m _ i , gm_2, <Zm-3j from (n — 1). If m is even, 
(k — 2) as calculated from (3.2b) ends with h (2qi + 2) — 2, or (qi + 1) missing powers of 2; 
note that 2° is always missing. The pattern of (3.5) follows from Theorems 2.2 and 3.1, and 
Lemma 3.2. D 

Corol la ry 3.2.1: The zigzag path in which all quotients are 1 leads to &n,fc = R(N) = F n + i , 
for N = F2n + i^n-4 + F2n-% + - - . , with smallest term F6 or F4, as n is odd or even. 

Proof: Rewrite [1; 1 , 1 , . . . , 1,1,1] as [1; 1 , 1 , . . . , 1,2] and use Theorem 3.2. On the right 
side, N — F2n + F2n-2 + F 2 n - 6 + . . . , which results from (3.5) if r m _ i = 1. • 
Coro l la ry 3.2.2: If R(N) from Theorem 3.2 is between n and r2 on the right 
side of the table, Zeck N is written from the 9t9tC9lC... pattern, 9t(l)!K(rm_i -
l ) £ ( g m _ 2 ) 9 % m _ 3 ) •. -JK(gi)£(l), m even; or, ending .. .£ (g i )£( l ) , m odd; r m _ i > 2. 

Proof: The zigzag path from &ij2 to bn,k on the right side is the mirror image of that 
from 6i?i to bUjk on the left side. Recall that bn^ = hn,2™-1+2-k by symmetry. D 

To illustrate, compute N from R(N) = 27 = 19 + 8. 19/8 = [2; 2,1,2]; n = (2 + 2 + 
1 + 2) + 1 = 8, m = 3. We are on the left side, and Zeck N begins i*i6;&8,2 = 8. Interpret 
the pattern 9t(l)£(2 - l)Vt(l)£(2)fJ{(2)£,(l) as use 16; omit 14; use 12; omit 10 and 8; use 6 
and 4; omit 2. Thus, Zeck N = Fw + F12 + F6 + FA = 1142; iJ(1142) = 27. The sequence 
19, 27, 8, occurs with 27 = 68j40 = R(N(jn,k)) for j^k = 2 8 " 1 + (25 + 22 + 21) - 2, verifying 

N = F2(74.i)+F2(5+1)+F2(2+i) +-^2(1+1)• O n t n e r igf l t side, Corollary 3.2.2 gives the associated 

solution N' from JH(1)£«(2 - l)£(l)JR(2)il(2)£(l) as JV; = F i 6 + F 1 4 + F10 + F 8 - 1440, where 
fl(1440) = 27 = 68,903 8 = 68)89 and 19 = &8,9i-

The symmetries of the array for R(N) let us find other even-Zeck integers M such that 
R(M) = R(N), with R(M) and R(N) both appearing in the nth row. Theorem 3.3 gives a 
special solution for M. 
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T h e o r e m 3.3: Let R(N) = n + r 2 , r i / r 2 = [qi;q2,qs, • - - Jgm-2J7"m-i]J as in Theorem 3.2; 
#1 > l , r m - i > 2. Let Zeck M be written from the £H£9t£... pattern of (3.5), adjusted by 
taking the quotients of r i / r 2 in ascending order: lft(l)£(gi)lft(</2)£(<j3) • • - 9 ^ m - i — l) i l ( l ) , 
m odd; .. .!ft(<|m._2)£(rm_i - l)i5(l), m even. Then R(M) = R(N), both appearing in row n. 

Proof: A reversal identity for continued fractions appears as Theorem 1 in [1]: if 
[aojaij-.-jOn-ijOn] = Pn/qn, then [ a n , a n _ i , . . . , a i , a 0 } = p „ / p n - i - Here, R(M) = pn = 
R(N). a 

Theorem 3.3 applied to the preceding example gives 9*(l)£(2)JK(2)£(l)$ft(2 - 1)£(1) or 
M = Fw + Fio + F8 + F 4 = 1066; JR(1066) = 27, but JV = 1142. 

The Calkin and Wilf [6] sequence (1.4) is the same as our sequence (2.1); that is, b(j) = 
R(N(J)), where b(j)/b(j + 1) is the j t h rational number, j = 0,1,2, Thus, the results of 
the present paper allow us to write ]bhe j t h rational number. Given j , by Lemma 2.1, we can 
write Zeck N(j), the Zeckendorf representation of the j t h even-Zeck integer; there are several 
ways [4] to compute R(N(j)) and R(N(j + 1)). Given any rational number a/6, Theorem 
3.2 can be adapted to find N(j) such that a/b = R(N(j))/R(N(j + 1)). For example, to 
answer at which position the rational number 13/8 appears, place 13 between 5 and 8 in the 
nth row, 5,13,8; n/r2 = 5/8 = [0; 1,1,1,2], n = 6, m is even. Since R(N(j)) = 13 is on the 
right side of the table, Corollary 3.2.2 gives N(j) = Fi 2 + JFio + F 6 = 207, and N(J+ !) = 
208, where J?(207) = 13, E(208) = 8. Prom Zeck JV(j), j = 212/2""1 + 2 1 0 / 2 " 1 + 2 6 / 2 " 1 = 
25 + 24 + 22 = 52; thus, 13/8 is the 52n d rational number. Another example: to find 5/12, 
use the sequence 5,12,7; 5/7 = [0; 1,2,2], n = 6,ra =• 3. We are on the left side; Theorem 
3.2 gives N(j + 1) = F12 + Fs + F6 = 173; Jf2(173) = 12. The preceding even-Zeck integer 
N(j) = F12 + F 8 + F4 + F2 = 169, i?(169) = 5; j = 2 1 2 / 2 ^ + 2 8 / 2 " 1 + 2 4 / 2 " 1 + 2 2 / 2 " 1 = 43. 
Thus, 5/12 is the 43 r d rational number. We note that R(N(j)) is another function f(j) such 
that f(j)/f{j + 1) takes every rational value exactly once, answering a question posed in [6]. 

Figure 1. The Calkin-Wilf version of the tree of fractions 
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Further, we can write the address of the rational number ri/r2 appearing in Calkin and 
Wilf a tree of fractions, which is a variant of the Stern-Brocot tree [7]. The tree of fractions 
(Figure 1) has 1/1 at the top of the tree. Each vertex r1/r2 has two children; its left child is 
n / ( r i + r 2 ) , and its right child is ( n + r2)/r2; each fraction is R(N(j))/R(N(j +1 ) ) for some 
j . In the nth row of the tree, the numerators are the first 2n~1 terms of our nth row. Let 
n/r2 = [qi] q2, qs, • • • ,q m -2, r T O _i] ,r m = l,qi> 0 , r m _ i > 2; if m is odd (even), r i / r 2 appears 
on the left (right) side of the tree, and r\ is on the left (right) of r2 in the table. Starting 
from 1/1, if m is odd, the vertex r i / r 2 has the address LTm-l~lRqm~2. .„Lq2Rqi; if m is even, 
jjrm_i»i^gm_2 m m _jfjff2jrrgi. w n e r e JJI m e a n s to move q vertices left; Rq, move q vertices right; 
L° and J?° are not written. If n is the left neighbor of r2 in the table and R(N(j)) ™ n + r2? 
then R(N(j))/R(N(j + 1)) is the right child of n/r2; if instead R(N(j + 1)) = n + r2, then 
R(N(j))/R(N(j + 1)) is the left child of n/r2. 

A C K N O W L E D G M E N T 

The author gratefully acknowledges the input of an anonymous referee whose suggestions 
have greatly improved the presentation of this paper. The referee improved theorem statements 
and some proofs, and gave many references to sequences appearing in [10]. The referee gave 
this paper a generous amount of time and thought, suggesting ways to make the notation 
consistent and to improve the outline of the paper. 

R E F E R E N C E S 

A.T. Benjamin, F.E. Su, and J. Quinn. "Counting on Continued Fractions." Mathematics 
Magazine 73«2 (2000): 98-104. 
M. Bicknell-Johnson. "The Smallest Positive Integer Having Ft Representations as Sums 
of Distinct Fibonacci Numbers." Applications of Fibonacci Numbers, Vol. 8 Dordrecht: 
Kluwer 1999: pp. 47-52. 
M. Bicknell-Johnson. "The Least Integer Having p Fibonacci Representations, p Prime." 
The Fibonacci Quarterly 40„3 (2002): 260-265. 
M. Bicknell-Johnson, and D.C. Fielder. "The Number of Representations of N Using 
Distinct Fibonacci Numbers, Counted by Recursive Formulas." The Fibonacci Quarterly 
37.1 (1999): 47-60. 
M. Bicknell-Johnson, and D.C. Fielder. "The Least Number Having 331 Representations 
as a Sum of Distinct Fibonacci Numbers." The Fibonacci Quarterly 39*5 (2001): 455-461. 
N. Calkin, and H.S. Wilf. "Recounting the Rationals." The American Mathematical 
Monthly 107 (2000): 360-363. 
R.L. Graham, E. Knuth, and O. Patashnik. Concrete Mathematics Reading: Addison-
Wesley, 1999. Chapters 4, 5, 6. 
D.A. Klarner. "Partitions of N into Distinct Fibonacci Numbers." The Fibonacci Quar-
terly 6 A (1968): 235-44. 
D.H. Lehmer. "On Stern?s Diatomic Series." American Mathematical Monthly 36.2 
(1929): 59-67. 
N.J.A. Sloane. "On-Line Encyclopedia of Integer Seuqence." http://www.research.att.com 
/ i j as/sequences/. 
M.A. Stern. "Uber eine zahlentheoretische Punkton." J. Reine Angew. Math. 55 (1858): 
193-220. 

2003] 179 

[1] 

[2] 

[3] 

[4] 

[5] 

[6] 

[7] 

[8] 

[9] 

[io; 

[ii 



STERN'S DIATOMIC ARRAY APPLIED TO FIBONACCI REPRESENTATIONS 

[12] S. Vajda. Fibonacci & Lucas Numbers, and the Golden Section. Chichester: Ellis Hor-
wood, Ltd., 1989. Chap. IX. 

AMS Classification Numbers: 11B39, 11B37, 11Y55 
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Tribute 

Jo Ann Vine 

JoAnn Vine, Fibonacci Quarterly typist for 25 years, is retiring. She never 
missed a deadline and hates to give it up, but it is time to retire. 

JoAnn sang with the San Francisco Opera before she married Richard Vine 
(FQ Subscription Manager for 17 years). She started her statistical typing business 
in 1964, typing theses for students at Stanford and San Jose State. 

Thank you, JoAnn, for your years of dedicated service to the Fibonacci 
Association! 
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