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1. I N T R O D U C T I O N 

It is well known that the Fibonacci numbers can be expressed in the form 

Round{-^=[(l + V5)/2]n}. 
V5 

[5] We look at integer sequences which are solutions to non-negative difference equations and 
show that if the equation is l -Bouncied then the solution can be expressed as Round {a AQ } 
where a is a constant and Ao is the unique positive real root of the characteristic polynomial. 
We also give an easy to test sufficient condition which uses monotonicity of the coefficients of 
the polynomial and one evaluation of the polynomial at an integer point. We use our theorems 
to show that the generalized Fibonacci numbers [6] can be expressed in this rounded form. 

In simple examples, the solution to a recurrence relation is often a constant times a power 
of an eigenvalue. For example, xn = 2x n _ i , with xo = 3 has the solution xn = 3-2n. Somewhat 
surprisingly even when we have irrational eigenvalues, the same form of solution may obtain, 
but with the extra complication of a rounding operation. For example, for the Fibonacci 
difference equation Fn = JFn-i + Fn-2 with FQ = 0 and F± = 1, we have the solution 

where a = (1 + VE)/2 and /3 — (1 — \/h)/2 and both a and /3 are irrational numbers. But 
pleasantly, 

Fn = Round S) 
where Round(X) returns the integer nearest to X. (This leaves Round ( | ) undefined.) A 
simple explanation for this ability to use Round is that |/3| < 1 and 1/VE < 1/2, and so 
| /3 n / \ /5 | < 1/2 for n > 0. (One should note that this rounding only works for n > 0. For 
n < 0, this formula is incorrect, but other simple formulas with Round are possible.) 

Professor Renato Capocelli passed away a few years ago while he was still a young man. This paper is the culmination 
of some work we started together when he visited Oregon State University. 
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This simple example might suggest that roundability would follow from some simple con-
ditions on the eigenvalues. A possible conjecture might be that: if every eigenvalue, except for 
the largest, were small, and if the initial deviations were small, then the deviations would stay 
small, and the integer sequence could be computed by rounding. When we are speaking about 
deviations here, we mean the difference between the sequence value and the approximation, 
e.g., 

dn = Fn- -=an 

would be the deviation for the Fibonacci sequence. More generally, we would have a sequence 
sn and an approximation of the form aAp where Ao is an eigenvalue of the operator for the 
sequence, a is a constant which depends on the initial values, and the deviation would be 

(Occasionally in the following, we may also say deviation when we mean the absolute value of 
the deviation.) 

So to maintain roundability, we would like the absolute value of the deviations to start 
small and stay small. We might wish that the deviations were always decreasing in absolute 
value, but that may not be the case. 

Consider a sequence sn defined by a kth order difference equation. If the k eigenvalues 
are distinct, sn can be written as 

fc-i 

i=0 

and if Ao is the largest positive eigenvalue, we can write the deviation as 

k-i 
dn = sn- «oAo = 5 ^ a*A?, 

i= l 

and by the familar absolute value inequality 

So, if |Aj| < 1 for each i E { 1 , 2 , . . . , & - ! } then 

K I < E W 
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and if J2i=i \ai\ < V 2 t h e n K l < 1/2, for all n > 0. 
So it seems that we have found the desired result. We have a result that takes care of the 

Fibonacci sequence, but this result will be difficult to apply to more general sequences since 
it seems to require us to calculate each of the a*. Notice that we can easily compute 

dn = sn - OQAQ 

but this really tells us little about YliZi \ai\-
Even though we can bound the absolute value of the deviations, the bound may have to be 

a severe overestimate to handle the possibly irregular behavior of the deviations. What sort of 
irregular behavior is possible? One possibility is spiking behavior, that is, the deviations may 
be'nearly 0, say for n G {1,2,3,4,5}, but then be relatively large for n — 6. Such spiking could 
occur if Ai = (1 — e)cj where e is a small positive number and a; is a 6th root of unity. Longer 
period spiking could be possible if, say, Ai = (1 — ei)ujs and A2 = (1 — ^2)075, then spiking 
with period 15 would be possible because the period 3 spike and the period 5 spike could 
add to give a large spike of period 15. Obviously, even longer periods are possible because a 
number of short periods could multiply together to give a long period. The simple absolute 
value bound produces an upper envelope for the deviations which can dance around rather 
erratically beneath this envelope. In general, this envelope may be the best easy estimate 
that one can find. As in other situations, restricting our difference equations to non-negative 
equations can help. But, we will need more than non-negativity for a strong result. 

2. A R O U N D I N G T H E O R E M 

Defini t ion 2 .1 : A difference equation xn == ctxn-t H h Ck%n-k is 1-bounded iff 
• Vi a £ N and ck G N4" 
• ^fx"Cft(A) *s a non-negative polynomial 

where ch(X) = Xk —ciA^"1 c& is the characteristic polynomial of the difference equation, 
and Ao is the unique positive root of ch(X). If, in addition, £~* ch(X) is primitive (aperiodic), 
that is, gcd{i\ci > 0} = 1, the difference equation is s t rong ly l - b o u n d e d . 

We want to use this definition to show: 
Theorem 2.1: If xn is an integer sequence which is a solution to a 1 -bounded difference 
equation, then there is an a so that 

a) 
Vw > 0 \xn — aAp I < max {\x* — « A Q | } . 

0<j<k—l 

h)if 
max \\XJ — aXl\} < 1/2 

0<j<Jfe-lU J U I J ' 

then Vn > 0, xn = Round{aX1o). 
c) If the difference equation is s t rongly 1-bounded 

BnoVn > no xn = Round(aXQ). 
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We approach this theorem via a simple lemma. 
L e m m a 2.2: If yn is a solution of yn = aiyn-i -\ h akyn-k and YH=I \ai\ < *> t n e n 

\Vn\ <M = max{|y0|, \vi\, • • • \Vk-i\}-
Proof: Clearly the conclusion follows for all n G { 0 , . . . , k — 1}. For larger n, 

Vn = Oiyn- l + 1" akVn-k = ] P <*iVn-i 
i=l 

and so 

k k 

\Vn\ < Yl \ai\\Vn-i\ < MY1 W ~ M 

where the first < is the absolute value inequality, the second < comes from the inductive 
hypothesis that each \yn-i\ < M, and the third < is from the assumption that ]T) \a{\ < 1. D 

Next consider the polynomial £~£ ch(X). If this polynomial is non-negative then it has 
the form Xk — feiA^""1 — • • • — bk with each hi > 0. Since substituting 1 for A must give 0, we 
have 1 — 6i — 62 6^ = 0 and hence 5^&i = ]£|&i| = 1 < 1. 

Now if dn is any solution to xn = c\xn-\ H h CkXn-k and dn has n o A" component, 
then dn is a solution to the difference equation which has ^_y as its characteristic polynomial, 

and dn is also a solution to the difference equation whose characteristic polynomial is ~^lc
x ^ • 

So by the previous remarks and the lemma, |dn| < max{|d0|7 Mil? • • • > |dfc-i|} = M. Since 
xn — aAg meets the assumptions for dn when a is chosen to exactly cancel the A™ component 
in xn, we have also proved part (a) of the theorem. 

For part (b), if M < 1/2 then since \xn - a\%\ < M < 1/2, we have a\% - 1/2 < xn < 
aXg + 1/2 and clearly xn = Round(a\%). 

For part (c), strongly 1-bounded implies that all of the eigenvalues Â  used in the expansion 
of dn have absolute value strictly less than 1. Hence, 

dn = J2<XiDmilK] 

and if |Ai| > |A2| > > |Ajb—1| then 

\dn\ < E \<*i\\Dmiwi\ < E N •c • n f c i A " i ̂  * * * I A ? I 
fe-1 k-1 

1=1 *=1 

which will be < 1/2 for large enough n because |Ai|n is exponentially decreasing to 0 while nk 

is growing at only a polynomial rate. In these inequalities we may want to recall that Dmi is 
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the wii fold derivative operator, and that a polynomial can always be bounded from above by 
a constant times the highest power of the variable in the polynomial. 

2 .1 , A N E A S Y T O C H E C K S U F F I C I E N T C O N D I T I O N 

It might seem relatively difficult to show that £~£ ch(X) is non-negative. After all, it 
seems that at least one would have to calculate AQ. Fortunately, there is a relatively easy to 
check sufficient condition. 

Let us first look at computing jz^* It is easy to check that 

ch(X) __ k_t k_2 

A — AQ 
= ^oA^~i+^iAf c-^ + - '- + ^ „ 1 

where go = 1 and gi+i — Xog% — c%+i- So carrying out this division is the same work as 
evaluating ch(Xo) stage by stage. In fact, 

gk = Aopjb-i - ck = A§ - c iA^- 1 ck = ch(X0) = 0, 

that is, the division is possible because A — AQ divides ch(X) is equivalent to Ao being a root of 
<A(A). 

Since we want to know if -£^~ch(X) is non-negative, we can compute 

A ~ ^ ( A ) = A* - (1 - 0OA*-1 - (9l - g2)Xk~2 - - - - - (gk-2 - gk~i)X - » - i 
A - A 0 

and we want 1 > gi > g2 > '" > gk~i > 0- We have the condition gk-i > 0 for free because 
gk = 0 = X0gk-i - ck, and so gk-i = ck/X0, and by assumption ck / 0. 

Now for the condition gi > <fc+i, we would need 

Ao - ciAJ-1 - • • • - Ci > Xp-1 - dAf
0 ci+i 

or equivalently 

0 > A£+1 - (a + l)Af
0 - (ca - cOAJ"1 ( Q + I - a) 

for i E { 0 , 1 , . . . , k — 2}. These inequalities give the necessary condition that 

Ao < ci + 1, 

and the rest of the inequalities are implied by the sufficient conditions 

Cfc-l > Ck~2 > ' ' " > C2 > Ci . 

Obviously these sufficient conditions are easy to test by looking at the coefficients of the original 
polynomial ch(X). It might seem that testing Ao < c\ 4- 1 would require one to know the value 
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of Ao, but as one can show, c\ + 1 > Ao iff ch{c\ + 1) > 0. So testing this condition can be 
done using only k integer multiplications. 

One minor problem remains. Although the conditions force the polynomial £~£ eft (A) 
to be non-negative, they do not force this polynomial to be primitive. That is, it is still 
possible for some of the eigenvalues to have absolute value equal to 1. The simplest way to 
force primitivity is to require c\ + 1 > Ao because this will force the second coefficient in the 
polynomial to be strictly positive. 

We collect these observations in the following theorem. 
T h e o r e m 2,3: Assume xn is an integer sequence which is a solution of the non-negative 
difference equation xn — c\xn-\ H hCkXn-k7 so that xn = aAg" + dn where Ao is the positive 
eigenvalue of the difference equation and dn has no AQ component. If 

9 Ck-i > • • • > c i 
• and ci + 1 > Ao 
® and max{ |d 0 | , |d i | , . . .,|dfc_i|} < 1/2 

then xn = Round(a\Q) for all n > 0. 
V 
• Ck-l >'">Cl 
9 and c\ + 1 > Ao 

then there is an no so that xn = Round(a\o) for all n > no, and no is the least integer so 
that m a x { | d n o | , | d n o + i | , . . . , | d n o + f c - i | } < 1/2. 

3 . U S I N G T H E R O U N D I N G T H E O R E M 

Consider the generalization of the Fibonacci difference equation from order 2 to order fc, 
that is, 

fn — fn-1 + / n - 2 + * ' ' + fn—k-

These numbers have been studied by many authors [3] [4] [6] [7]. Here the coefficients are all 
1, that is, 1 = c\ = C2 = • • • = Cfc. So the first condition of the theorem is satisfied. Although 
we do not know the value of Ao, we do know that c\ + 1 = 2. To show that 2 > Ao, all we have 
to do is evaluate the polynomial Afc - A*"""1 A - l a t A = 2 and show that the value of 
the polynomial is positive. But 2k - 2k~1 2 - 1 = 2k - (2k - 1) = 1, and so 2 > A0. 
Hence the theorem assures us that there is some no so that fn = Round(aXo) for n > no-
Notice that we have said nothing about initial conditions. We know that the value of no will 
depend on the initial conditions. 

The generalized Fibonacci numbers satisfy the kth order Fibonacci difference equation 
and the initial conditions /o = 0, f\ = l , /2 = l,fs = 2, . . . , /&_i = 2fc~3. Working the 
difference equation backward we can show that an equivalent set of initial conditions is 
/_(fc_2) = /_(fc_3) = • • • = / - i = /o = 0 and fi = 1. Then using standard methods (e.g. 
bi-orthogonal bases), we can show that 

A Q - 1 
a Ao[(* + l ) A o - 2 * ] " 
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The corresponding deviations are 

d_(fc_2) = 0 - aA~(*-2> 

d_(fc_3) = 0 -aA-( f c - 3 > 

do = 0 — a 
d\ = 1 — a. 

Notice that max{|d_(fc_2)Urf-(fe-3)|j -. -, Mo|} = \do\ = a because Ao > 1. The fact that 
Ao > 1 can be easily shown by evaluating ch(X) at A = 1, which gives — (ft — 1), a negative 
value, and so Ao > 1. We note that di > 0 because otherwise dn would always be negative and 
would therefore have a AQ component. If we can show that both a < 1/2 and 1 — a\o < 1/2, 
then we can take no = — (ft — 2), and the generalized Fibonacci numbers can be calculated by 
fn = Round(a\o) for all n > -(ft - 2). 

To show that 1 — aAo < 1/2, we only need (fc+iu"J2fc > >̂ ̂ ut this can be written as 
0 > (k — l)(Ao — 2) which is true because 2 > Ao-

To show 1/2 > a, we need \ > ^ -^Ao [(k + l)Ao — 2k] which can be rewritten as 
2 > (k + 1)AQ(2 — Ao) and using the fact that 2 — Ao = A "̂&, this can be written as 2 A Q _ 1 > 
k + 1. For ft = 2, this reduces to Ao > 3/2 which is easy to verify. For ft > 2, we use 
Ag"1 = A*p2 + . . . + l + i to get 2A*;-1 = 2(Ag"2 + . . .+ ^ > 2(ft - 1) using the fact that 
Ao > 1. Finally, 2(ft - 1) >°ft + 1 if ft > 3, and 1/2 > a is established. 

We had previously established this result by a more complicated argument [2]. Some of 
the applications of generalized Fibonacci numbers are described by Capocelli [1]. 

As another example, let us consider 

xn = 2a?n_i + 2xn_2 + 3ajn_3. 

The characteristic polynomial is A3 — 2A2 — 2A — 3 which has the dominant root Ao = 3. Here 
ft = 3, and Ck-i = c2 = 2 > ci, and c\ + 1 = 2 + 1 = 3 > Ao- So the first and second conditions 
of the theorem are satisfied. But, as yet we do not have initial conditions which are needed to 
specify the deviations. It is easy to check that a = ^ ( # o + x\ + x2) . So, for example, if we 
choose the initial conditions XQ — l , ^ i = 3, #2 = 9, then a = 1 and xn = 1 x 3n„ For these 
initial conditions 

d0 = ^ o - a x 3° = 1 - 1 = 0 
dt = xi -ax 3 1 = 3 - 3 = 0 
d2 = x2 - a x 32 = 9 - 9 = 0. 

So the third condition of the theorem is satisfied and xn = Round(a AQ) = jRotmd(l x 3 n = 3n). 
Of course, this result could have been found directly without using the rounding theorem. 
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Let us consider a different set of initial conditions. For example, xo = 0, x\ = 0,#2 = 1-
Now a = 1/13 and the deviations are 

« 1 1 
d o = °-13=-T3 

di = 0- JL-_A 
13 ~~~13 

1 - — - — 
13 _ + 1 3 ' 

So the absolute values of these deviations are all < 1/2 and the third condition of the theorem 
is satisfied. Thus, xn = Round (JTJA"). In this example, the theorem tells us that the solution 
can be obtained by rounding, and this result was not obvious without the theorem. 

Let us consider one more example of initial conditions for this difference equation, namely, 
xo = 0, x\ = 3, #2 = 9. Here, a = 12/13 and the deviations are: 

« 12 12 
d o = ° -13 = -13 

d1 = 3 - ^ = +i-1 13 13 

d2 = 9 108 _ 9 
13 ~ 13' 

In this case, the deviations are not all less than 1/2 in absolute value. Further, c\ + 1 = Ao, 
so neither immediate rounding nor eventual rounding is promised by the theorem. It is easy 
to calculate that 

nA 12 . 12 
<*3 = 2 4 - - x 3 3 = - -

19 Q 
d, = 75 x 34 = +— 

4 13 13 
d5 = 2 2 5 - | x 3 ^ = A . 

So in this example, the deviations are periodic with period 3, and the deviations do not 
decrease. The theorem does not say that rounding is possible and, in fact, rounding is not 
possible. 
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