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1. INTRODUCTION 

We consider a generalization of the Fibonacci sequence which is called the fe-Fibonacci 

sequence for a positive integer k > 2. The k-Fibonacci sequence {gn ^} is defined as 

0(*) _ fl(*) _ . . . _ 0(*) _ 0 aW _ i 9Q — 9i — — 9k-2 — u> flfc-i — l 

and for n > k > 2, 

9n — 9n-l + 9n-2 ^ r 9n-k' 

We call gn the nth k-Fibonacci number. For example, if k = 2, then {$4 } is the Fibonacci 

sequence {Fn}. If k — 5, then ^ ^ = ^J * — g\ — g% = 0, $4 = 1, and the 5-Fibonacci 
sequence is 

(gW = 0) , 0,0,0,1,1,2, 4,8,16,31,61,120,236,464,912,.... 

Let E be a 1 by (k — 1) matrix whose entries are ones and let In be the identity matrix of 

order n. Let _2) for n > 0. For any k > 2, the fundamental recurrence 

relation, n> k, 

9n — 9n-l ^ 9n-2 + + 9n-k 

can be defined by the vector recurrence relation g^+j = Qkgn , where 

Qk = 
0 Jfc-i 
1 £7 (1) 
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We call Qk the k-Fibonacei matrix. By applying (1), we have g ^ x = Q^Si^- In [4], [6] and 
[7], we can find relationships between the fe-Fibonacci numbers and their associated matrices. 

In [2], M. Elmore introduced the Fibonacci function following as: 

eXix _ ex2x ^ ^ ^ An),^ _ A?eAl* - Age*22 

fo(x) = -= , fn{x) = f™(x) = 

and hence fn+i(x) = fn(x) + fn-i(x), where 

AI = — - — and A2 = — - — . 

Here, Ai, A2 are the roots of x2 — x — 1 = 0. 
In this paper, we consider a function which is a generalization of the Fibonacci function 

and consider sequences of generalized Fibonacci functions. 

2. G E N E R A L I Z E D F I B O N A C C I F U N C T I O N S 

For positive integers I and n with I < n, let Q^n denote the set of all strictly increasing 
^-sequences from {1 ,2 , . . . , n } . For a n n x n matrix A and for a,/3 E Qj,n ? let -A[a?|/?] denote 
the matrix lying in rows a and columns j3 and let A(a\j3) denote the matrix complementary 
to -A [a |/3] in A. In particular, we denote -A({i}|{j}) = A(i\j). 

We define a function G(k,x) by 

00 (k) 

Since 

r g£fc)(n + i) , 

the function G(k?x) is convergent for all real number a;. 
For fixed k > 2, the power series G(fc, a?) satisfies the differential equation 

G ^ ( * , ^) - G**-1^*, x) - • • • - G"(k, x) ~ Gf(k,x) - G(fe, x) = 0. (2) 

In [5], we can find that the characteristic equation xk — xk~1 x — 1 = 0 of Qk does 
not have multiple roots. So, if Ai, A2, - - -, Ajb are the roots of xk — a;*"1 — • • • — x — 1 = 0, then 
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Ai, A2 , . . . , At are distinct. That is, the eigenvalues of Qk are distinct. Define V to be the A; 
by k Vandermonde matrix by 

V = 

1 
Ai 

1 
A2 

\k—2 \k—2 
Al A2 
A*"1 A*"1 

1 
A* 

(2) 

Then we have the following theorem. 
T h e o r e m 2 .1 : Let Ai, A2, . . . , A*. be the eigenvalues of the ^-Fibonacci matrix Qk. Then, the 
initial-value problem ^ ~ o G®(k, x) = G^( fc ,x) , where G&(k, 0) =.0 for i = 0 , 1 , . . . , k - 2, 

and G^k""1\k,0) = 1 has the unique solution G(k,x) = Y^l=icieXiX\ where 

/ uk+idetV(k\i) 
[ } d e t F 3 i = 1,2,...,k. (3) 

Proof: Since the characteristic equation of Qk is xk — xk~x — x — 1 = 0, it is clear 
that cieA l X + c2eX2X H h ckeXkX is a solution of (2.). 

Now, we will prove that c» = •^y(—l)k+tdetV(k\i),i = 1,2,...,k. Since G(k,x) = 

Cie\ix + C2e\2x + < C j f c e A f c * a n d for x = 0? G?W(fcj 0) - 0 for t = 0 , 1 , . . . , Jfc-2, G^k~x\k, 0) = 1, 
we have 

G(fc, 0) = a + c2 + • • • + ck = 0 
G\k, 0) = ci Ai + c2A2 + • • • + ckXk = 0 

G<*"2>(jfc, 0) = ci A j - 2 + c2A*~2 + • • • + ckXk~2 = 0 

G^-^ik, 0) - c iAj" 1 + c2Xt1 + ' •' + cjbAj"1 - 1. 

Let c = (ci, C2, -. -, cjb-i, cjb)T and b = ( 0 , 0 , . . . , 0,1)T. Then we have Vc = b . Since the 
matrix V is a Vandermonde matrix and Ai, A2, . . . , A*, are distinct, the matrix V is nonsingular. 
For i = 1,2,..., k, the matrix V(fc|i) is also a Vandermonde matrix and nonsingular. Therefore, 

by Cramer's rule, we have c* = ( — l ) k + i d e t ^ y \ i = l,2,...,k and the proof is complete. • 
We can replace the writing of (2) by the form 

Gw(k,x) = G&'Vfcx) + • • • + G"(k,x) + G!{k,x) + G{k,x). 
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This suggests that we use the notation Go(k,x) = G(k,x) and, for i > 1, Gi(k,x) = G^(k,x). 
Thus 

Gn(k,x) = GM(k,x) = dAyeA l* + c2\%ex*x + • • • + ck\%ex*x 

gives us the sequence of functions {Gn(k,x)} with the property that 

Gn(k,x) = Gn-i(k,x) + Gn-2(k,x) + • • • + (?„_*(*,a;), n > k, (4) 

where each c$ is in (3). We shall refer to these functions as k-Fibonacci functions. If k = 2, 
then G?(2,x) = fo(x) is the Fibonacci function as in [2]. Prom (4), we have the following 
theorem. 
T h e o r e m 2,2: For the ^-Fibonacci function Gn(fc,x), 

G0(k, 0) = 0 = g™, Giik, 0) = 0 = g[k),..., Gk-2(k, 0) = 0 = gk%, 

Gk-t(k,0) = 1 = gk%Gk(k,0) = G0(*,0) + • • • + Gfc-i(fe,0) = 1 = g[h\ 

gM = Gn(k, 0) = ci A? + c2A^ + • • • + cfeA£ 

— # n - l + 9n-2H r 5 n _ f c , n £ K, 

where each c, is given by (3). 
Let Gn(k,x) = (Gn(k,x),...,Gn+k-i(k,x))T. For k > 2, the fundamental recurrence 

realtion (4) can be defined by the vector recurrence relation G„ + i ( / ; , x) = QhGn(k,x) and 
hence Gn+i(fc,a;) = Q^Gi(k,x). 

Simee gk_t = gk — 1, we can replace the matrix Q& in (1) with 

Qk = 

0 5 ^ 0 . . . 0 
0 0 g ^ ... 0 

0(fc) (*) 
- iff, 

Then we can find the matrix Ql = [^-(n)] in [5] where, for i = 1 ,2 , . . . ,k and j — l,2,...,k, 

s y w - 9n+a-2) + + p„+(i_2)-o-i) (fc) (5) 

We know that gl^n) = 5„+4_2 and 5]fc(n) = 5„+i_!- So, we have the following theorem. 
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Theorem 2.3: For nonnegative integers n and m, n + m > k, we have 

k 

Gn+m+1(k,x) = ^9iAn)G™+i(k>x)' 

In particular, 

Gk{k,x) = ^ ^ x -
»=o t ! 

Proof: Since G„+i(A;,a;) = Q£Gi(fc,a;), 

Gn+m+1(k,x) = QJ^Gifoa:) = Qk • QFG&z) 
= QlGm+1(k,x). 

By applying (5), we have 

Gn+m+i(fc, x) = ^|1(ri)Gm+i(feJ x) + h ^fc(n)Gm+fc(fe, x). 

Since J2iZo G{(k,x) = Gk{k,x) and 

k-i (*) (fc) 

i=0 

we have 
oo (fc) 

i=0 

Note that Q£+ m = Q™+n. Then we have the following corollary. 
Corollary 2.4: For nonnegative integers n and m, n + rn > ft, we have 

i = i 

We know that the characteristic polynomial of Qk is Â  - Â ™1 A - 1. So, we have 
the following lemma. 
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L e m m a 2*5: Let Xk — A*1"*1 — A — 1 = 0 be the characteristic equation of Qfc- Then, for 
any root A of the characteristic equation, n > k > 0, we have, 

Proof: Prom (5) we have, for j = 1,2, . . . , k, 

9lj(p) = g*_t + g*_2 + • • • + g*^. 

It can be shown directly for n = k that 

\k _ „(*) xfc-1 , (JJk) , (fc) , , (k)\ ,k-2 , , fjfc) , J&) \ x , Jk 

We show this by induction on n. Then 

An+1 = An . A 

= (flUWA*-1 + flU-i(n)A*-2 + • • • + flI»A + ̂ ( n ) ) A 

- 9nX + \ 0n - l + 9n-2 + '"+ 9n-k+l)A 

4. (nW 4. 4. „(*) ^ \k~2 . . . . f„(*) » /„(*) \ I 2 4- „(*) A 
+ f ^ n - l "T r 9n„k+2j A "I r \9n-l + Wn-2 j A + $ n - l A -

Since A& = Xk~1 H h A + 1, we have 
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An+1 = £<> ( A f c - l + ... + X + l ) + ( ^ + gWa + . . . + 5(*)fc+1) A * - l + 

{ & + & + • • • + 9 ^ Afc"2 + • • • + ( & + « £ 2 ) A2 + <^XA 

= (</ifc) + * & + • • • + 9(:ik+1) A*"1 + ( « « + • • • + <^f c + 2) A* 

+ " - + ( * ? ) + ^ 2 I ) A + « £ 0 

+ - + ( « ? ) + fl?2i)A + « « 

= 5J)fc(n + l^*"1 +5I,fc_1(n + l)Afc"2 +5J>fc_2(n + 1)A* 

+ ---+ffi> 2(»+1)A + ffM(» + 1) 

= E»I>+1)AJ"1-

Therefore, by induction of n, the proof is completed. • 
Theorem 2.6: Let A be a root of characteristic equation of Qk- For positive integer n, we 
have 

yfc-3 

Gn(M) = X>^AJ_1> 

where 

J = n 

Proof: Since Afe = A*"""1 H h A + 1 and by lemma 2.55 we have 
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Gn(k, A) = 5 « + g^X + ^ A 2 + • • • + fef.A- + . 

( (*) (*) 

( (&) (Jfe) 

(*) . g*+fc • t / L | i ^ n + f c + 1 

, + - - + ^ ( n ) ^ + ... + 
n! 

(*) \ 

+ ••• + 

\(fc-l)! + ft! +ffl*(* + 1)(* + l ) ! + +»i*Wn, + - - J A 

where 

for j = 1,2, . . . , ft, the proof is completed. D 
From theorem 2.3 and theorem 2.6, we have 

oo (k) 

j=0 

- J g\A(n - l)Gi(fc, x) + • • • + sljfc(n - l)Gk(k, x) 

k 

3 = 1 
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where 

a3n = 
9n+k . y n + j - 1 . Y ^ /.t fr^w+* 

"*T + ( F i ) i + i j 1
1 ' l j W — £! 

for j= l ,2 , . . . , f c . 

3 . S E Q U E N C E S O F G E N E R A L I Z E D F I B O N A C C I F U N C T I O N S 

Matrix methods are a major tool in solving certain problems stemming from linear recur-
rence relations. In this section, the procedure will be illustrated by means of a sequence, and 
an interesting example will be given. 

To begin with, we introduce the concept of the resultant of given polynomials [3]. Let 
f(x) — Y%=o aixn~{ a n d g(x) — YHLO hx™'~i be polynomials, where ao ^ 0 and 60 ¥" 0. The 
presence of a common divisor for f(x) and g(x) is equivalent to the fact that there exists 
polynomials p(x) and q(x) such that f(x)q(x) — g{x)p{x) where deg p(x) < n — 1 and deg 
q{x) <rn — l. Let q(x) = uox™'1 H h um-i and p(x) — voxn~l H h v n - i . The equality 
f(x)q(x) = g(x)p(x) can be expressed in the form of a system of equations 

GQUO = &o^O 

aiu0 + a0^i = bivo + h0vi 
(I2U0 + a\U\ + a0u2 — h2vQ + h\Vi + 60^2 

The polynomials f(x) and #(x) have a common root if and only if this system of equations 
has a nonzero solution (wo,Wi,.. .,wo,wi,.. .)• Q f° r example, m = 3 and n = 2, then the 
determinant of this system is of the form 

Oo 0 0 
01 ao 0 
02 a>i 0,0 
0 02 Oi 
0 0 a2 

-b0 
- 6 1 
- 6 2 
- 6 3 
0 

0 
- 6 0 
- 6 1 
-6 2 
- 6 3 

= 

do o\ ®2 0 
0 ao &i 0,2 
0 0 ao a i 
60 61 &2 63 
0 60 bi 62 

0 
0 

&2 
0 
63 

= \S(f(x),g(*))\ 

The matrix S(f(x),g(x)) is called the Sylvester matrix of polynomials f(x) and #(x). The 
determinant of S(f(x),g(x)) is called the resultant of /(a:) and g(x) and is denoted by 
R(f(x),g(x)). It is clear that R(f(x),g(x)) = 0 if and only if the polynomials f(x) and 
#(#) have a common divisor, and hence, an equation f(x) = 0 has multiple roots if and only 
ifR(f(x),f'(x)) = 0. 

Now, we define a sequence. For fixed k, k > 2, and a complex number a, a sequence of 
fc-Fibonacci functions, {Gn(k,a)}, is defined recursively as follows: 

G0(k,a) = so, Gi(k,a) = s1, . . . , Gk-i(k,a) = sk-i, (6) 

116 [MAY 



GENERALIZED FIBONACCI FUNCTIONS AND SEQUENCES OF GENERALIZED FIBONACCI FUNCTIONS 

Gn(k,a) = PiGn-tik^a) + p2Gn-2(kJa) + • • - -hpkGn^k(k,a), n>k, (7) 

where SQ, S I , . . . , Sk-i, pi, P2, • • •, Pk are complex numbers. 
Our natural question now becomes, for fe > 2, what is an explicit expression for Gn(k,a) 

is terms of s0, 8±, . . . , s&_i, pu . . . , p&? If s0 = • • • = $k-2 — 0, sk-t = sk = l, pt = >.- = 
Pk = 1 and a = 0, then by theorem 2.2 we have Gn(fe,0) = gn. In [8], Rosenbaum gave the 
explicit expression for k = 2. 

In this section, we give an explicit expression for Gn(k, a) — p\Gn-\(k, a)-\-p2Gn~2{kja) + 
"• + pkGn-k(k,a), n > k in terms of initial conditions Go(k,a) — $o> C?i(fe,a) = 
*i, . . . , <?A;-i(fc,a) = 5jb-i, fe > 2. 

Let Gn(fe) = (Gn(fe,a), . . . , . C?n_fc+i(fc,a))T for fe > 2. The fundamental recurrence 
relation (7) can be defined by the vector recurrence relation Gn(k) = Q&Gn_i(fe), where 

Q& = p Pk 
4 - i o a n d p = t p i , ^ , - - - ^ * : - ! ] -

Let s = (s jb- i , . . . , 5o)T. Then, we have, for n > 0, Gn+&_i(fe) = Q^s, and the characteristic 

equation of Qk is 
/(A) = Xk - ptX*'1 pjb-iA ~ p* - 0. 

If iJ(/(A), / ;(A)) 7̂  0, then the equation /(A) = 0 has distinct fe roots. 
Theorem 3.1: Let /(A) be the characteristic equation of the matrix Qk. If i?(/(A), / '(A)) / 0, 
then Gn(k,a) = piG?

n_i(fe,a) + p2Gn_2(fe5a) + • • • +p&G?
n_&(fe,a) has an explicit expression 

in terms of so,. - -, §k-i-
Proof: If i?(/(A),/ ;(A)) ^ 0, then the characteristic equation of Qk has fe distinct roots, 

say Ai, A2,.. •, A*. Since the matrix Qk is diagonalizable, there exists a matrix A such that 
A'^-QkA = diag(Ai, A 2 , . . . , A*.). Then Gn+^_i(fe) = Adiag(Ay, Ag , . . . , A^)A~1s, and hence we 
have 

k 
Gn(k, a) = diAJ + d2A^ + • • • + dkXn

k = J2 «W> 
t = i 

where di , d2, • . . , djb are complex numbers independent of n. We can determine the values 
of di, d 2 ? . . . , dk by Cramer's rule. That is, by setting ra = 0, 1, . . . , fe — 1, we have 

G0(fe, a) = di + d2 + • • • + dfc, 
Gi(fe, a) = diAi + d2A2 H 1- dkXkj 

Gk-t(k, a) = diAf"1 + d2A^"1 + • - - + dkX\ k > 

2003] 117 



GENERALIZED FIBONACCI FUNCTIONS AND SEQUENCES OF GENERALIZED FIBONACCI FUNCTIONS 

and hence 
Vd = s, d = (d i ,d 2 , . . . ,d jb) T . (8) 

Therefore, we now have the desired result from (8). • 
Recall that 

Qk P Pk 
4 - i 0 

where [p = pi,P2> - • • ? JPfc-i]- Then, in [1], we have the following theorem. 

T h e o r e m 3.2 [1]: The (i,j) entry q\™' (pi,p2, - • • 3Pfc) in Q% is given by the following formula: 

qlj>(pi,P2,...,Pk)= £ m , 4 - . . . 4 . m . 
(mi,...,mfe) mi H hmfc 

/ m i H hmfc\ 
x )J 

\ m i , m 2 , . . . , m j b ; 
(9) 

where the summation is over nonnegative integers satisfying mi + 2rri2 H h krrik = n — i+j, 
and the coefficient in (9) is defined to be 1 if n = i — j . 

Applying the Gn+k-i(k) = Q^s to the above theorem, we have 

3 = 1 

(10) 

Prom (9), we have 

«?(pi , •••,!>*) = X ] 
(roi , . . . ,mj,) 

mj + mj+i -I h m^ 
m H [- m& 

V m i J m 2 r . . J m f e / 

where the summation is over nonnegative integers satisfying mi + 2m2 H f- krrik = n — k+j, 
and the coefficient in (10) is defined to be 1 if n — k — j . 
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Hence, from theorem 3.1 and (10), 

k 

Gn(k, a) = ^2q$(pi, • • • ,Pk)sk-j 

E**?-

Example : In (6) and (7), if we take a = 0, SQ = si = • • • = Sk~3 = 0, Sk-2 = §k-i = 1 and 
Pi = ••• =Pk = 1, then 

G0(fc, 0) = • • • = (7fc„3(fc, 0) = 0, Gfc„2(ife, 0) - Gfc-i(fc, 0) - 1, 
and for n > fc > 2, 

Gn(fc, 0) - Gn_i(fc, 0) + Gn_2(*, 0) + • • • + Gn_fc(fe, 0) 
^ 9n= 9n-l + 0n-2 H h 0n-Jfe-

Let gn = (ffn j---,fl„_fc4.i)T- For any fc > 2, the fundamental recurrence relation 

„(*) _ (k) . (k) ,(fc) .(*) * « ^ } = ^_ 1 +^„_ i 2 H 5-^-fc c a n be defined by the vector recurrence relation g^J = Q&g^J.!. 

Then, we have gi&) = QJJgo*^ = <?&(131?0,.. D ,0)T . Since Q& has fc distinct eigenvalues (see 

gW = d1\n
1+--- + dk\%. 

Hence, we can determine di,d,2, - • -, cf& from (8). 
For example, if k — 3, then the characteristic equation of Q3 is /(A) = A3 — A2 — A — 1 = 0, 

and hence 

i?(/(A),/ '(A)) = 

1 - 1 - 1 - 1 0 
0 1 - 1 - 1 - 1 
3 - 2 - 1 0 0 
0 3 - 2 - 1 0 
0 0 3 - 2 - 1 

= 44 ^ 0. 

Thus /(A) = 0 has 3 distinct roots. Suppose a, /? and 7 are the distinct roots of /(A) = 0. 
Then we have 

1 , . 1 

. 1 , . «\/3~ 1 
P = - g ( « + «) + - g - ( « - v) + - , 

1 , . «\/3 , x 1 
7 = - g ( « + «) - -g—(« ~ v ) + 3 . 
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where 

So, we have 

and hence 

* = V^T, u = y 19 + 3\/33 and v = y 19 - 3%/33. 

gg)=d1an + d20n + d3in, 

1 1 
a £ 
a2 £2 

1 " 
7 
I2. 

M d2 
rf3 

— 
"ol 
1 
l j 

Set 

5 = det 
1 
a 
a2 

1 
0 
P2 

1 
7 
7 2 . 

, 8a = det 
0 1 
1 P 
1 £2 7 ,.5p = det a 

2 a 

0 1 
1 7 
1 7

2 

and 

<5A = . d e t 
1 1 0 
a y9 1 

2 /32 1 a 

Then we have 

di = —, d2 = - p and d3 = -=- . 

As we know, the complex numbers di , d2, and da are independent of n. 

We can also find an expression for gk' in [6] follows: 

9™ 
(& + &)(P-r)-(Pn-<*n) 

(a- 1)08-7) 

(11) 

(12) 

So, by (11) and (12), 

8ac?+tfip»+5,r _ (*£-i+*--0 ^ - ^ - 0" - a " ) 
( a - 1 ) 0 8 - 7 ) 
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Similarly, if k = 2, then 

<#) = -F,n = r ^ - ( A ? - A 2 ) , (13) 

where Ai and A2 are the eigenvalues of Q2. Actually 

_ l + y/5 , . 1 - V 5 
Ai = — and A2 = — - — . 

In this case, 

Al — A2 y/E A2 — Ai y/E 

and (13) is Binet's formula for the nth Fibonacci number Fn. 
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