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1. INTRODUCTION

We consider a generalization of the Fibonacci sequence which is called the k-Fibonacci

sequence for a positive integer k& > 2. The k-Fibonacci sequence {g )} is defined as

k k k
g = ( ) +9( )2+ +g'£b—)k'

We call g( ) the nth k-Fibonacci number. For example, if &k = 2, then {g,(f)} is the Fibonacci

sequence {F,}. If £ = 5, then g((J ) = g§5) g§5) = ggs) =0, g‘(f) =1, and the 5-Fibonacci
sequence is

(935) - 0) 10,0,0,1,1,2,4,8,16,31, 61,120, 236, 464,912, . . ..
Let E be a 1 by (k — 1) matrix whose entries are ones and let I, be the identity matrix of

order n. Let g(k) = (g,(bk), (k)

2 ik 1) for n > 0. For any k > 2, the fundamental recurrence
relation, n > k,

k k k
gi® “95; )1+g£_)2+---+g( )

n—k

can be defined by the vector recurrence relation gn +1 = ngf,k), where

=] %], o
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We call Q the k-Fibonacci matriz. By applying (1), we have g}ﬂl = ’,;ggk) . In [4], [6] and

[7], we can find relationships between the k-Fibonacci numbers and their associated matrices.
In [2], M. Elmore introduced the Fibonacci function following as:

2T NLAIT _ Z\NpA2Z
— (n) _ )‘13 )\26
— , fal@) = fo (2) 7 )

AT _ oA
fo(z) = 2 °

and hence fr11(z) = fo(z) + fa-1(z), where

1 —_
= +\/gand)\2=1 \/5

M 2 2

Here, A1, A2 are the roots of z2 —z — 1 = 0.
In this paper, we consider a function which is a generalization of the Fibonacci function
and consider sequences of generalized Fibonacci functions.

2. GENERALIZED FIBONACCI FUNCTIONS

For positive integers ! and n with I < n, let @i, denote the set of all strictly increasing
l-sequences from {1,2,...,n}. For an n X n matrix A and for o, € Qi n, let Ala|B] denote
the matrix lying in rows a and columns S and let A(a|B) denote the matrix complementary
to' Ala|f] in A. In particular, we denote A({:}|{s}) = A(i|j).

We define a function G(k,z) by

co g(k) ]
G(k,z) = Z ;—!m“.

=0

Since

(k)
lim gn \nT ) (n+1)

E
noree gr(z-gl

— 00,

the function G(k, z) is convergent for all real number z.
For fixed k > 2, the power series G(k, ) satisfies the differential equation

G®(k, z) — G*V(k,z) — - — G"(k,z) — G'(k,z) — G(k,z) = 0. (2)
In [5], we can find that the characteristic equation z¥ —z*~! — ... —z — 1 = 0 of Q}, does
not have multiple roots. So, if A1, Az, ..., Ay are the roots of z¥ — %=1 — ... — 2 —1 =0, then
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A1, A2, ..., A are distinct. That is, the eigenvalues of @ are distinct. Define V' to be the &k
by k£ Vandermonde matrix by

1 1 1
/\1 A2 AIﬂ:
V= : : : : (2)
APTEOAETE L AR
YLD D

Then we have the following theorem.
Theorem 2.1: Let Ay, As, ..., Ax be the eigenvalues of the k-Fibonacci matrix Q. Then, the
initial-value problem Y5~ G®(k, z) = G®)(k, z), where G®(k,0) =0 for i = 0,1,...,k — 2,

and G*~1(k,0) = 1 has the unique solution G(k,z) = Zf=1 c;e*®, where

det V(k|i) .
;= (=) =12, ... k. 3
G ( ) detV ? ) ) ( )
Proof: Since the characteristic equation of Qy is z*¥ —zF~1 —... —z — 1 =0, it is clear

that c;eM% + cpe?2® + - - - + cxe**® is a solution of (2.).
Now, we will prove that ¢; = 3¢ (—1)¥+idet V(kli),i = 1,2,...,k. Since G(k,z) =

c1eX% 4 coe?? 4. .. cre*® and for z = 0, GO (k,0) =0fori =0,1,...,k—2,G¢I(k,0) =1,
we have

G(k,0)261+62+"'+ck=0
G,(k,()) =ciA1+ A2+ -+ A =0

G*D(k,0) = ci A2 A2 4 A2 =

G*D(k,0) = et At b eadb 4 AT = 1
Let ¢ = (c1,¢2,..-,¢k—1,¢k)T and b = (0,0,...,0,1)T. Then we have Vc = b. Since the
matrix V is a Vandermonde matrix and A1, Ag, .. ., Ag are distinct, the matrix V' is nonsingular.

Fori=1,2,...,k, the matrix V(k|7) is also a Vandermonde matrix and nonsingular. Therefore,

by Cramer’s rule, we have c¢; = (—1)’““%—2—;(—5@, 1=1,2,...,k and the proof is complete. [J
We can replace the writing of (2) by the form

G®(k,z) = G*V(k,z)+-- -+ G"(k,z) + G'(k,z) + G(k, z).
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This suggests that we use the notation Go(k,z) = G(k,x) and, for i > 1, G;(k, z) = G (k, z).
Thus
Gn(k,z) = G™ (k,x) = c1ATeM® + coAJe?2® + - - + cp AT e

gives us the sequence of functions {G,(k,z)} with the property that
Gn(k,z) = Gp-1(k,z) + Gp—2(k,z) + -+ + Gn—i(k,z), n >k, 4)
where each c¢; is in (3). We shall refer to these functions as k-Fibonacci functions. If k = 2,

then G(2,z) = fo(z) is the Fibonacci function as in [2]. From (4), we have the following
theorem.

Theorem 2.2: For the k-Fibonacci function G, (k, z),

Go(k,0) =0=g$P,G1(k,0)=0=g®, ..., Gr_z(k,0) = 0= g{¥,,
(k,0) =1=g®  Gi(k,0) = Go(k,0) + - - - + Gx—1(k,0) = 1 = g{¥
Gk-—l(kao) =1 91> k( ’ ) 0( ) )+ + k—l( ) ) 9

9t®) = Gp(k,0) = c1AT + A} + - - -+ cp A}

k k k
=g+ g4+ g, n2 E,

where each ¢; is given by (3).

Let Gnp(k,z) = (Gn(k,x),...,Gnik—1(k,z))T. For k > 2, the fundamental recurrence
realtion (4) can be defined by the vector recurrence relation Gp41(k,z) = QrGn(k,z) and
hence Gn+1(k,z) = Q3G (k, ).

Sinee g,(clf_)l = g,(ck) = 1, we can replace the matrix @y, in (1) with

0 g®, 0 ... 0]

0 0 g,(ck_)1 0

Q=1 : = 1
0 0 g,(ck_)1
Lo®, o . P o

Then we can find the matrix Qf = [!J,T,j(n)] in [5] where, fort=1,2,...,kand j =1,2,...,k,

t _ (k) (k)
9i,;(M) = 9p3 oy T T Iniimg)-(i—1)° (5)

We know that 9;{,1("") = 97(:2;’—2 and g}: w(n) = g,(fzi_l. So, we have the following theorem.
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Theorem 2.3: For nonnegative integers n and m, n+ m > k, we have

k
Grnim+1(k,z) = Zgl,j(n)Gm‘!-j(k?z)'
i=1
In particular,
oo (k)

Gr(k,z) = Z g%’i:z:’

i=0
Proof: Since Gp11(k, z) = Q2 G1(k, z),

Gn+m+1(k7-7-") = Q:+mG1(k7w) = Q"I: ' Q’;anl(k7 iL')
= Q’,;’Gm+1(k,.’l:).

By applying (5), we have

Grim1(k, 3) = g1 ;(0)Gms1(k,z) + -+ -+ g} 1 (0) i (K, 7).

Since Ef__?ol Gi(k,z) = G(k,z) and

(k)

k-1 (k)
k k g Itk
> Gilk,o) = g+ giho + e o TR
i=0

we have

x© gB)
Gi(k,z) = Z Ttkgiono

]
— il
Note that Q7™ = Q™" Then we have the following corollary.
k k g

Corollary 2.4: For nonnegative integers n and m, n + m > k, we have

k
Grims1(k,2) =Y g1 ;(m)Grsj(k, ).

j=1

We know that the characteristic polynomial of Q, is A¥ — A5~ —... X —1. So, we have

the following lemma.
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Lemma 2.5: Let A¥ — A¥~! —... — X — 1 = 0 be the characteristic equation of Q. Then, for
any root X of the characteristic equation, n > k > 0, we have,

k .
= Zgl’j(n)/\J_l.

i=1

Proof: From (5) we have, for j =1,2,...,k,

gI,j(n) =gk 1tgf o+ Hgb

It can be shown directly for n = k that

. - k k
N = g g (g, 1 g, 4t o) N2t (o, 4+ g,) A gy

=X AR AL
We show this by induction on n. Then

X"'-H — )\n A
= (gi,k("")’\k_l + gi,k—1(”))\k_2 +eet 91,2("))\ + gii-,l(n)) A
k & k -
= gEX* + (91(1—)1 + 9( Jyt et gas,-zk+1) ARt

- k
+ (98 o) X2 (90, + (98,) 22 4+ g0

Since \F = AF=1 4 ...+ XA+ 1, we have
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AP = o)) (k=14 x 1) (g,‘,’”1 49" 4 g® +1) AB-14
(9% + 9 -+ g a) X2t (02, + 925) 42 + g0,
= (ggc) Mt ggc)kﬂ) AT+ (ggc) +ee +g‘l(1,k2k+2) AR
oo () + o0, ) A+ g
_ ’(Llfal)‘k—l ( (k) 4 g(k) N gr(blc_)k”) =
ook (g + g0, ) A+ g0
=gl + DN gl (A DT gl (1A

+ .- +gI’2(n +1)A+ gI,l(n +1)

1J('n,+ AL

IIMa-

Therefore, by induction of n, the proof is completed. O
Theorem 2.6: Let A be a root of characteristic equation of Q;. For positive integer n, we
have

k
Gk, A) =) ani N1,

where

(k) (k) (k)

_ gn+k gﬂ+] 1 gn-i—z
i=k+1

Proof: Since \¥ = A¥=1 4 ... 4+ X4+ 1 and by lemma 2.5, we have
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. g( ) g(k)
G (k )\)_g(k) 51_21/\_'_ n+2A2+ e 2n Z2n yno

g(k)k g(k)k 1 g( )
(g(k)+ HE pgli (k1)L +911(7") 2” +. )

K (k+ 1)!
(k) (k) (k)
k In+tk Intk+1 92
( 7(L+)1+ 7,:: +912(k+1)(k’:+ 1) +- +912(”) 0 > A
+ P +
(k) (%) (k) (%)
In+r—1 gn+k } Intk+1 an yk-1

=, + aznA 44 O’kn/\k-l

k
_ yj—1
—E a; A7,

i=1

where
(k) (k) (k)
In+k g’n+] 1 g'n.+1.
Qj, = ] +( —1)! + Z gl,](z)
i—-k+1
for 7=1,2,...,k, the proof is completed. OJ

Frorn theorem 2.3 and theorem 2.6, we have

g(k)
Gn(k7z)““z T;:;H 1.

i=0

= g 1(n — 1)G1(k,z) + - + g1 (0 — 1)Gr(k, )

k
— i1
—§ a; 77,
i=1
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where

(k) (k) (k)

. In+tk g’n+_‘l 1 gn+1
aJ" - kt 1)| +t§*’1 (z)

for j=1,2,...,k.
3. SEQUENCES OF GENERALIZED FIBONACCI FUNCTIONS

Matrix methods are a major tool in solving certain problems stemming from linear recur-
rence relations. In this section, the procedure will be illustrated by means of a sequence, and
an interesting example will be given.

To begin with, we introduce the concept of the resultant of given polynomials [3]. Let
f(@) =37 paiz" " and g(z) = Y 1w, biz™ "t be polynomials, where ag # 0 and by # 0. The
presence of a common divisor for f(z) and g(z) is equivalent to the fact that there exists
polynomials p(z) and ¢(z) such that f(z)q(z) = g(z)p(x) where deg p(z) < n — 1 and deg
g(z) <m—1. Let g(z) = uox™ 1 + -+ -+ Up—1 and p(x) = vox™ ' + -+ -+ v,—1. The equality
f(z)g(z) = g(z)p(x) can be expressed in the form of a system of equations

aoUp = bo'Uo
aiug + agui = bivg + bovy
asug + ai1u1 + agus = bavg + bivy + bove

The polynomials f(z) and g(z) have a common root if and only if this system of equations
has a nonzero solution (ug,us,...,v0,v1,...). If, for example, m = 3 and n = 2, then the
determinant of this system is of the form

ap 0 0 -—bo 0 ap a1 a2 0 0
a; ag 0 b1 —by 0 ap a1 a2 O
az a1 Qo —bz —bl =0 0 apg a3 a| = |S(f($),g(1‘))|
0 az Qa1 —-bg —b2 bo bl bz b3 0
0 0 a2 0 -—b3 0 bo b1 b2 b3

The matrix S(f(z),g(x)) is called the Sylvester matriz of polynomials f(x) and g(z). The
determinant of S(f(z),g(z)) is called the resultant of f(z) and g(z) and is denoted by
R(f(z),9(z)). It is clear that R(f(z),g(x)) = 0 if and only if the polynomials f(z) and
g(z) have a common divisor, and hence, an equation f(z) = 0 has multiple roots if and only
if R(f(z), f'(z)) = 0.

Now, we define a sequence. For fixed k, k > 2, and a complex number a, a sequence of
k-Fibonacci functions, {G,(k,a)}, is defined recursively as follows:

Go(k, a) = 8o, Gl(k,a,) =81y -0y Gk_l(k,a) = 8k—1, (6)
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Gn(k, a) = p1Gn_1(k,a) +p2Gn_2(k,a) + .- +kan_k(k,a), n > k, (7)

where sg, S1, ..., Sk—1, P1, P2, .-, Pk are complex numbers.
Our natural question now becomes, for k > 2, what is an explicit expression for G, (k,a)
is terms of sg, S1, ..., Sk—1, P1, ..., PET HSo=---=8,_2=0, sp_1=8,=1, pp=---=

pr =1 and a = 0, then by theorem 2.2 we have G,(k,0) = g,. In [8], Rosenbaum gave the
explicit expression for k& = 2.

In this section, we give an explicit expression for Gy, (k, a) = p1Gn-1(k,a)+p2Grn—2(k,a)+
-+ + prGr-i(k,a), n > k in terms of initial conditions Go(k,a) = so, Gi(k,a) =
81y «-ny qk_l(k,a) = Sk—1, k > 2.

Let Gp(k) = (Gn(k,a), ..., Gn_g+1(k,a))T for k& > 2. The fundamental recurrence
relation (7) can be defined by the vector recurrence relation G (k) = Q+Gn—_1(k), where

Qk = [Ikp_l I:;:I and P= [Pl;P27 - '7pk—1]'

Let s = (Sg—1,-..,50)T. Then, we have, for n > 0, Gpyr_1(k) = ~Zs, and the characteristic

equation of Qk is

FO) =X —p At — o —pp A —pp =0
If R(f(A), /(X)) # 0, then the equation f(\) = 0 has distinct k roots.
Theorem 3.1: Let f()) be the characteristic equation of the matrix Q. If R(f(X), f'(A)) # 0,
then G, (k,a) = p1Gn-1(k,a) + p2Gn_2(k,a) + - - - + pxGn_i(k,a) has an explicit expression
in terms of sg,..., Sk—1.

Proof: If R(f()), f/())) # 0, then the characteristic equation of @y has k distinct roots,
say A1, A2,..., ;. Since the matrix Qr is diagonalizable, there exists a matrix A such that
A~1QrA = diag(A1, A2, - - -, \g)- Then Gppg—1(k) = Adiag(Af, A%, ..., A?)A~!s, and hence we
have

k
Gn(k,a) = didT +doAf + -+ dedf = ) did7,

=1

where dy, ds, ..., di are complex numbers independent of n. We can determine the values
of dy, ds,..., dip by Cramer’s rule. That is, by setting n =0, 1, ..., k — 1, we have

Go(k,a) =dy+de+ -+ dg,
Gi(k,a) = diA1 +da2da + - - - + di g,

Gi-1(k,a) = di A1+ dodE™1 oo+ dpab-1,
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and hence
Vd=s, d=(di,dz,...,ds)". (8)
Therefore, we now have the desired result from (8). O
Recall that
A _| P Pk
Qk - [Ik—l 0 } )
where [p = p1,p2,-..,Pk—1]- Then, in [1], we have the following theorem.

Theorem 3.2 [1]: The (3, j) entry qi(?) (p1,p2,---,pk) in Q’,: is given by the following formula:

Z m; +mip1+ -+ mg

QE?)(PI:P2a---,Pk)= mi+ -+ mg

(ml,...,mk)

<m1+---+mk
X

™y my
Pt 9
ml,mz,...,mk) 1 P ©)

where the summation is over nonnegative integers satisfying mq, +2ma+---+kmp =n—1i+74,
and the coefficient in (9) is defined to be 1 if n =i — j.
Applying the G4 x—1(k) = Qs to the above theorem, we have

Gr(k,a) = g (1, .., Pk)Sk—1+ @y (P1, - - -, PR) Sk -2+

o+ g™ (pa, ..., pr) S0

k
= qu(:})(Pl, ey PE)Sk—j- (10)
Jj=1

From (9), we have

Z mj+mjp1+ -+ mg

41(57;)(1’1,---,1%): M+ -+ mg

(m1,...,mg)

x(m1+"'+mk)pm1 p™*
1 .0 k )
my,Ma,..., Mg

where the summation is over nonnegative integers satisfying m1+2mao+:--+kmg = n—k+7,
and the coefficient in (10) is defined to be 1 if n = k — j.
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Hence, from theorem 3.1 and (10),

k
Gn(ka a) - Z (II?;)(ph e 7pk)5k—-j
=1

k
= AT,
=1

Example: In (6) and (7), if we take a =0, s =81 =+ = 8§43 =0, 8g—2 = 55—1 = 1 and
p1=---=pg =1, then
Go(k,0) = -+ = Gr—3(k,0) =0, Gg—2(k,0) = Gx-1(k,0) =1,

and for n > k > 2,
Gn(k, 0) = Gn_l(k, 0) + Gnmz(k, O) +--+ Gn_k(k, 0)
=9n=9gn-1+Gn-2+" -+ Gn—k-

Let éq(zk) = (g%k),...,g,(:?k _H)T. For any k > 2, the fundamental recurrence relation

gg“) = g,,(ﬁzl + ggc_)2+- . -+gq(zk_) i can be defined by the vector recurrence relation g,‘{“) = ngﬁf_)l.

Then, we have g,({“) = ";;gg’“’ = Q7(1,1,0,...,0)T. Since Q) has k distinct eigenvalues (see
51, )
gl = di AT - d AT
Hence, we can determine dy,ds, .. ., d; from (8). 5
For example, if k = 3, then the characteristic equation of Q3 is f(A) = A3—A2—-A—-1=0,
and hence

1 -1 -1 -1 0
0 1 -1 -1 -1
RFO),FO)=13 -2 -1 0 0 |=44+#0.
0 3 -2 -1 0
0 0 3 -2 -1

Thus f(A) = 0 has 3 distinct roots. Suppose a, S and « are the distinct roots of f(A) = 0.
Then we have

a—é(u—i—'v)—l—1
-3 3’

1 W3 1
B=—cw+v)+ L w—0)+3,
1= st - L+ L,
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where
i=v—1, u=1/19+3v33 and v= /19— 3V33.
So, we have
9 = dia™ + daf™ + d3v", (11)
and hence
1 1 1 d 0
(87 ﬂ Y dyj=1|1
a? B% 42 ds 1
Set
1 1 1 0 1 1 1 0 1
d=det|a B v |,0e=det|{l B ~v|,dg=det|a 1 ~v/|,
a2 ﬂ2 ,.),2 1 ﬂ2 ,.y2 aZ 1 ,),2
and

1 1 0
dr=det|a f 1].
a? p? 1

Then we have

8y
2,

% o % _
dl——a,d2—7, andda—

As we know, the complex numbers d;, d3, and d3 are independent of n.

We can also find an expression for g in [6] follows:

&1 +92,) (B — (" —a”)
(@-DE-7

9® = ( (12)

So, by (11) and (12),

doa™ + 0gB™ + 047" ( 1(521 +91(L3-22) B=7)—(B" —a")

4 (@-1)(B-)
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Similarly, if & = 2, then

1

@ —-F =
n L VI W

(AT = 23), (13)
where A; and A are the eigenvalues of Q2. Actually

14+4/5 1-
= 2\/—and)\2= B

IS

A1

In this case,

oL _r . 1 1
T VBT - B

and (13) is Binet’s formula for the nth Fibonacci number F,.
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