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1. INTRODUCTION AND MAIN RESULT

A well-known but classicial result concerning the harmonic series is that the sequence of

partial sums } r_, % can never be an integer for n > 1. More generally, Nagell [3] showed that
Yot _'l_r 3 cannot be an integer for any positive integers m, n and d. As an extension of

these results the author, in a recent paper [4], constructed further examples of positive ratlonal
termed series having non-integer partial sums. These partial sums were of the form Y ~_; T
where {U,} are the sequence of generalised Fibonacci numbers generated, for n > 2, via the
recurrence relation

Un = PUn—l - QUn—27 (1)

with Uy = 0, U; = 1 and (P, Q) a relatively prime pair of integers satisfying [P| > @ > 0 or
P #0, Q@ <0. (Note when (P,Q) = (2,1) one has U, = n). By viewing these partlal sums as
the symmetric function formed from summing the products of the terms U , U yee 1 taken
one at a time, one may naturally ask whether all other symmetric fucntions in the remprocals
of such generalised Fibonacci numbers can be non-integer. In this paper we will show that for
sequences {Up} generated via (1), with P > 2 and Q < 0, there can in fact be at most ﬁnitely
many 7 such that one or more of the elementary symmetric functions in U , Uz U— is an
integer. To establish this result we will require two preliminary Lemmas, the ﬁrst of which is
a refinement of Bertrand’s postulate due to Ingham [2].

Lemma 1.1: For any real number x > 1 there always exists a prime in the interval ((L',.’L‘-I—.’I)%).

The second lemma is a standard result of generalised Fibonacci sequences, a proof of
which can be found in [1].
Lemma 1.2: For any sequence {U,} generated with respect to a relatively prime pair of
integers (P, Q) via (1) then (Um,Un) = Um n)-

We now can prove the following theorem:
Theorem 1.1: Suppose the sequence {U,} is generated via (1) with respect to the relatively
prime pair (P,Q) such that P > 2 and Q < 0. Denote the k** elementary symmetric function
n g, _Ul_27""-f,1: by ¢(n, k), then for this family of functions there ezists a uniform lower
bound N on n, such that ¢(n, k) is non-integer forn > N and 1 < k < n.

Proof: To establish the non-integer status of ¢(n, k) it will suffice to consider the two
separate cases of k > 3logn and k < 3logn, noting here that it is sufficient to take only
strict inequalities as logn can never be an integer for integer » > 1. In both cases we will

demonstrate the existence of the lower bounds given by N1 = min{s € N : logn > 3% for

e . 2
n > s} = [e¥=<] and N; = min{s € N : 9(105") + Slogn o L (3103'::_1)ﬁ > 28(1 + log 3)® for

152 [MAY



A NON-INTEGER PROPERTY OF ELEMENTARY SYMMETRIC FUNCTIONS IN RECIPROCALS . ..

all n > s} respectively on n, for which ¢(n, k) is non-integer. As N; and N, are constructed
independently of k, one can then set N = max{N;, N;} from which it is immeidate that
¢(n, k) must be non-integer for all n > N and 1 < k < n. Furthermore, as N; and N> are not
dependent on the specific choice of the sequence {Uy,}, one sees that the lower bound N must
hold uniformly over the family of generalised Fibonacci sequences as specified in the theorem
statement. We now proceed with the following two cases.
Case 1: k> 3logn

First note for the prescribed values of (P,Q) it can be shown, via an easy induction
on n, that U, > n. Now, as ¢(n,k) is formed from summing the terms ﬁll—, ﬁ%,...,ﬁl;
taken k at a time, we observe that ¢(n, k) must occur k! times in the multinomial expan-

k
sion (U% + 'Ul; 4+ Uin) . Hence, using the usual comparison of logn with the terms of the

harmonic series, we obtain that

k k
1 1 1 1 1 1 1
¢(n’k)<k!(Ul+U2+ +Un) <k!( +5+ +n>
1 k

Now by definition of N; if n > N; then logn > 3% and so k > §§—§E Consequently

1 P k k_k’“ 1 1\* e e\k
77 (1+logn) <H(1+§> == (z+3) <(3+3) <1

noting here that the second last inequality follows from the fact that % < €. Hence, we

deduce from the previous inequality and (2) that 0 < ¢(n, k) < 1 for any n > N; as required.
Case 2: k < 3logn
In this case it first will be necessary to show that for n > Ny

(H];‘TI)—1)8> (%+1)5. 3)

Upon factoring out % and Wk";l—) from the right and left hand side respectively of the conjec-

tured inequality in (3) one finds that

ﬁ(l—@)s>(l+g)s. @

2003] 153



A NON-INTEGER PROPERTY OF ELEMENTARY SYMMETRIC FUNCTIONS IN RECIPROCALS ...

Now, as k£ < 3logn and so f—L < 3—1%5ﬂ — 0 monotonically for n > e, it is clear the

term (1+ %)5 can be bounded above by (1 + log3)® for n > 3 say. Similarly, as @ <

9(logn)? | 3logn n® nd i
===+ =2 —0and FFDF > (BlogniD)T —F 0° 88 7 — 00, one can choose n sufficiently

large but finite and independent of k, such that ﬂ’%’—ll < 1 and E‘g(%%‘f)'g > 28(1 + log 3)5.

Consequently by definition of N3 one has for n > N;

n3 8
(kT 1) (1 - k(k;_ 1)) > (1+log3)°

and so one concludes that (3) must hold for all n > N,. Now raising both sides of (3) to the

power é one finds upon rearrangement that

e+ )+ (142 ‘
k k+1 k+1) °
Hence for n > N, there must exist, by Lemma 1.1, a prime p in the open interval

(1~|— T %) By construction p must be such that 1 < mp < n for m = 1,2,...,k but

(k + 1)p > n. Considering again ¢(n, k) as a sum of the product of the terms ULI, U%? ey 5'1:
taken k at a time we can write
) Bidbo+---+b
1 1+02+ 40 B
¢(n’ k) = _—— (k) == =)
i=1€i U1U2...Un C
where c; is one of the possible Z) products of the terms U;,Us,...,U, taken k at a time and
0,0z...U,
by= ———.
I

By the above UpUsyp . .. Urp = ¢, for some s € {1,2,..., (})}, and as (k + 1)p > n, no other of

the remaining (Z) — 1 products ¢; can contain generalised Fibonacci numbers in which all of
the corresponding k subscripts are a multiple of p. Consequently, by construction each b;, with
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i # s, must contain at least one of the terms in the set A = {Up, Usp,...,Usp} while b, will
contain none of the terms in A. Now by Lemma 1.2 as p is prime (Uy, Unp) = U(p mp) = Up, for
eachm = 1,2,...,k, and so Uy|b; for every i # s. Also for (r,p) = 1 one has (Up,Uy) =U; =1
but as bs contains only those terms U, for which (r,p) = 1, we conclude that U, must be
relatively prime to bs, and so Upbs, which in turn implies that Up|B. Thus ¢(n, k) = Z where
Up|C but Uy|B, that is ¢(n, k) cannot be an integer for any n > N, as required. [

Remark 1.1: It is clear that the above argument could easily be applied to higher order
recurrences {Uyn} with Uy, > n if an analogous result in Lemma 1.2 could be found.
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