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1. INTRODUCTION 

Recall that P := {1,2,3}. . .}, N := P U {0} and Z := {0 ± 1, ± 2 , . . . } . Then, for each 

r±(n) := |{(mi?m2,m33ra4) G Z4|n = m\ + m\ + m\ + m|} | . 

For each n G P, cr(?i) denotes the sum of all positive divisors of rc, 6(n) denotes the exponent of 
the largest power of 2 dividing n, and then Od(n) := n2~6^n^. (Quite properly, 6(n) (or 2 6 ^ ) 
is called the binary part of n and Od{n) is called the odd part of n.) In this note we give a 
simple proof of the following elegant result first stated and proved by Jacobi [1, p. 285]. 

Theorem 1: For each n G P , 

r4(n) = 8(2+ (-l)n)a(Od(n)). 
(Of course, r4(0) = 1.) 
Our proof depends on several immediate consequences of the celebrated Gauss-Jacobi 

triple-product identity 

oo oo 

]I(i-x2n)(i + tx2n-1)(i + r1x2n-1) = J2xn2tn> (!) 
n = l — oo 

which is valid for each pair of complex numbers t,x such that t ^ 0 and |x| < 1. For a 
proof see [2, pp. 282-283]. 

2, PROOF OF THEOREM 1 

We begin with Jacobi's triangular-number identity [2, p. 285] 

oo oo 
2 j J ( l - xnf = ]T(-1)&(2& + l)xk{k+1)/2, (2) 

n = l —oo 

valid for each x such that \x\ < 1. In (2) we first let x -> x8, and then multiply the 
resulting identity by x to get 

oo oo 

2*IJ(1 - a;8")3 = £ ( - l ) * ( 2 * + l)a:<2fc+1>a. (3) 
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Next, we square both sides of (3), and appeal to the elementary identity 

u2 + v2 = -{(u + v)2 + (u- v)2} 

to get 

oo oo 
2 i tnu i i \ 2 Ax2 JJ(1 - a;8")6 = J2 E (-1)i+*(2i + W2* + l)a^+1>2+(2fc+1> 

1 i=—co Jb=—oo 

oo oo 
= E E (-l)i+&(2i + l)(2fc + l)x2W+fe+1>2+«-fc)2] 

j=z—oo Jc=~-oo 

Now3 with 
J£ := {(r3 5) E Z2|r and 5 have the same parity}, 

it follows easily that the function F : Z 2 —» Z2
5 defined by 

-F(j\ *0 := ( i + fc, J - fc), for each (j? k) G Z2 , 

is one-to-one from Z 2 onto J5. Hence, in the foregoing identity let r = j + fc, s = j — k, so 
j = ( l /2)(r + ^)3 A; = ( l /2)( r - 5), and let x -> x1 / 2 to get 

1 (r,s)€E 

= E ( - i ) r { (^+ i ) 2 - ^ ( r + 1 ) 2 + s 2 

(r,s)6iS 

y (2TO+1) v2-+ i>2 y x(2™)2 - y x^im+^ > > » ) v2"> 
—00 —00 

£ > m + 2)2x(2™+2»!5]1(2',+1)! + E x ( 2 m + 2 ) 2 £ ( 2 n + IJV2" 

00 00 
2 { E ( 2 m + i ) 2 i ( ! m + I ) J E i W ' - E x ( 2 m + 1 ) 2 E ( 2 n ) V 2 n ) 
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since m £ Z <==> m + l G Z . We cancel a factor of 2 and put 

oo 
(2n)2 /(*):= X><a™+1>\ *(*):= £ > 

to get 

2*ft(l - ^ ) 6 = g^9'fix)-9ix)-^x)'e'9{x) (4) 
1 9\X) 

where 6X := xDx,Dx denoting differentiation with respect to x. But, with the help of (1), we 
get 

f(x) = 2xfl(l-xSn)(l + x8n)2, 

^ ) = n ( l - ^ ) ( l + ^ - 4 ) 2 , 

so that 

'<*>=2xf[ (1 + a:8n)2 
g(x) Al(i + SB8»-4) 

Hence, 

«™*»-$Hgi^-.Efi&£1}. 
Now, 

5^) 2 Jg = f{x)g{x) = 2xJI(l - *8n)2(l + ^4")2 
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With the help of Euler's identity [2, p. 277] 

n(i+a?»)(i-xa»-i)=il 

which is valid for each complex number x such that \x\ < 1, we substitute the foregoing 
evaluations into (4), cancel 2x, let x —> x1^ and divide both sides of the resulting identity 
by I K 1 - x2nf{l + xn)2 to get 

™(l _ r 2 n \ 6 / i _ T2n-l\6 ™ 

n (
( 1 - J 4 + ^ =na-«*)M-«»-T 

- 1 + 1 6 V ^ i V P * - 1 ^ ' (5) 
fc = l & = 1 

We now digress momentarily to make a couple of key observations. First, we let t = 1 in 
(1), and observe that the fourth power of the right-hand side of the resulting identity generates 
the sequence r^n), n E M. In other words, 

oo ( oo 1 4 oo 

na-^a+s2"- 1)8- E*n f =Y,r*Wxn-
1 l-oo J n=0 

Next, we observe that the composite function a o Od arises quite naturally in the expansion: 

0 0 foi* 1\ 2k—1 °° °° 

E (^ZXi = E E<2* - D*"-1 • ̂ ' ^ 1 - x 2 

OO CO 

EEC2*-1)*-

= E*nE<* 
n=l d|n 

d|odd 

= E< 7(°d(n))a : n-
n=l 
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Returning to the proof of our theorem, we appeal to [2, p. 312], and in (5) let x —> —x to 
get 

J2 r4(n)xn = JJ(1 - x2nf{\ + x271-1)8 

n=0 

k = l + x k=l l x 

4„_2 °° (11. i \„ .2fc- l 

- 1 + 1 5 Z ^ l_a;4n-2 + 8 Z ^ 1 _ x2fc-l 
n = l fc=l 

oo oo 

= 1 + 16 J2 a{Od{n))x2n + 8 J^ (r(Od(n))xn 

n = l n = l 

= 1 + 16 J2 <r(Od(2n))x2n + 8 ] T <r(Od(2»i))x271 + 8 J P <T(2» - l ) * 2 " " 1 

n = l n = l n = l 

OO OO 

= 1 + 24 ^ <r(Od(2n))x2'1 + 8 ̂  a(2n - l)*2™"1. 
7 1 = 1 7 1 = 1 

Here, we've made use of the obvious facts: Od(2n) = Od(n) and Od(2n — 1) = 2n — 1, for each 
n G P. Finally, we equate coefficients of like powers of ar to get 

r4(0) = 1 

and for each ra G P, 

r4(2n) = 24a(Od(2n)), r4(2n - 1) - 8a(2n - 1). 

This completes the proof of theorem 1. 
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