AN ELEMENTARY PROOF OF JACOBTI'S
FOUR-SQUARE THEOREM

John A. Ewell

Department of Mathematical Sciences, Northern Ilinois University, DeKalb, IL 60115
(Submitted March 2001)

1. INTRODUCTION

Recall that P := {1,2,3,...},N = PU{0} and Z := {0+ 1,£2,...}. Then, for each
n €N,
ra(n) := [{(m1, ma, m3, m4) € Z4n = m2 + m2 + m2 + m2}|.
For each n € P, o(n) denotes the sum of all positive divisors of n, b(n) denotes the exponent of
the largest power of 2 dividing n, and then Qd(n) := n2~%™), (Quite properly, b(n) (or 2°(™)
is called the binary part of n and Od(n) is called the odd part of n.) In this note we give a
simple proof of the following elegant result first stated and proved by Jacobi [1, p. 285].

Theorem 1: For eachn € P,
ra(n) = 8(2+ (=1)")o(0Od(n)).
(Of course, r4(0) =1.)
Our proof depends on several immediate consequences of the celebrated Gauss-Jacobi
triple-product identity

o0 oo
[T -2+ A+ el =5 e, (1)
n=1 —00

which is valid for each pair of complex numbers ¢,z such that ¢ # 0 and |z| < 1. For a
proof see [2, pp. 282-283].

2. PROOF OF THEOREM 1
We begin with Jacobi’s triangular-number identity [2, p. 285]

2 [T -2 =5 (-1)F(2k + 1)aFE+D72, (2)
=1

—COo

valid for each x such that |z] < 1. In (2) we first let # — %, and then multiply the
resulting identity by z to get

2 ﬁu — 283 = i(-—l)k(zk; + 1)z @R+, (3)
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Next, we square both sides of (3), and appeal to the elementary identity

u? +o? = %{(u +v)? + (u —v)?}

to get

[ers) oo oo | 2 2
452 H(l - wﬁn)G — E ‘Z (_1)j+is(2j +1)(2k + 1)$(zj+1) +(2Kk+1)

1 j=—00 k==—o0c0

o 0
= 3 D (125 + 1)(2k + 1)gf0 DGR,
j=—c0 k=—0c0
Now, with

E = {(r,s) € Z*|r and s have the same parity},

it follows easily that the function F : Z? — Z?, defined by
F(j,k) = (j +k,j — k), for each (j,k) € Z7,

is one-to-one from Z2 onto E. Hence, in the foregoing identity let r = j +k&,s = j — k, so that
§=(1/2)(r +35), k= (1/2)(r — 5), and let z — z'/2 to get

4z ﬁ(l — gm0 = Z (-D'r+148)Fr+1- S)x(“”+1)2+32
1

{r,s)EE

= 3 (CU{F+1)? - sl

(r,s)EE
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-0

ﬁE@mJ 1)’z (2m+1>2‘§“ (2m)? _L%(zm—u) ‘}T“‘(gﬂz (2n)?
- G0

CO (o 0] (o] cO
. 2, (2m+2)? ¥ (2n4+1)? | U (2m+2)? 9 V2, (2n+1)2
N (2m 4 2)% > T FYy oz é_ﬂi(?m—fh 1)z
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since m € Z <= m + 1 € Z. We cancel a factor of 2 and put

(o o] (e}
fla) =Y gl g(z) =y g’
—00 —00

to get

20 [(1 - t)° = g(a2 %=L @) '9(wg)(;)l2‘(z) 8:9(2) "

where 6, := £D,, D, denoting differentiation with respect to . But, with the help of (1), we
get

fl@) =2z ]](1 - *)(1 +2%")?,

g(@) =[] —*) (@ +2* %7,

so that
peita| et
Hence,
o{f(w)/g(z)}—f§§{1+1sz - z”’;;i@fs’;“}.
Now,

2 f(x) _ _ - 72 n\2
9(z) 9@) = f(z)g(z) ~2$1:[(1—w8 (1 + '),
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With the help of Euler’s identity [2, p. 277]

o.0)

Ha+zma -2 =1,

1

which is valid for each complex number z such that |z| < 1, we substitute the foregoing
evaluations into (4), cancel 2z, let x+ — x'/* and divide both sides of the resulting identity
by [1(1 — z2)2(1 + z™)? to get

(1 —2%)8(1 —g?r1)0 X £2n—1)8
IJ L= )21+ )2 IF1‘$ )

oo
(2k — 1)z*+—1
:1+1621+ % Z 1+ g2h—1 - (5)
k=1

We now digress momentarily to make a couple of key observations. First, we let t =1 in
(1), and observe that the fourth power of the right-hand side of the resulting identity generates
the sequence r4(n), n € N. In other words,

H(l — 2?41 4 2?8 = {Z a:"z} = Zu(n)w”.

1 n=0

Next, we observe that the composite function o o Od arises quite naturally in the expansion:

_ 2k—1 00 00 )
I e DIt

k=1j=0

= ii(% — 1)z (k=1

k=1j=1

Y

n=1 d|n
dlodd
= Z o(0d(n))z™.
n=1
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Returning to the proof of our theorem, we appeal to [2, p. 312], and in (5) let £ — —z to
get

Zm(n)wn = H(l — 2?1 + g8

n=0
o0
B (2k — 1)zt
‘1+16;1+ 2k+ Z — p2k—1

‘ o0
B (2n — 1)z*n—2 (2k — 1)1
_1+162 1 — p4n—2 SZ — p2k—1
n=1

=1+16 Z o(0d(n))z*™ + 8 Z o(0d(n))z"™

n=1

=1+16 i a(0d(2n))z*" + 8 i o(Od(2n))z®™ + 8 f: o(2n — 1)z !

n=1 n=1 n=1

=1+24 Z a(0d(2n))z*" + 8 E o(2n — 1)z?" 1.

n=1 n=1
Here, we’ve made use of the obvious facts: Od(2n) = Od(n) and Od(2n — 1) = 2n— 1, for each
n € P. Finally, we equate coefficients of like powers of z to get
ra(0) =1
and for each n € P,
r4(2n) = 240(0d(2n)), r4(2n — 1) = 80(2n — 1).
This completes the proof of theorem 1.
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