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1. INTRODUCTION

It is well-known (see, [4] p. 411) that the general solution of the differential equation
(z% — 1)y" + zy’ — n?y = 0 is of the form:

n n
T+ vVr2 -1 Tz —vz2 -1
y=C|——| +C|——F] , (1)
2 2
where C; and Cs are arbitrary constants and n € N.
For C; = C3 =1 from (1) we get that
2 1 " 2 1 "
T+ Vs — T — vz —

Tn(z) = (—“‘2—_> + (“—2"‘“) ) (2)

is the Chebyshev polynomial of the first kind.
In [2] the author has considered a more general class of polynomials, namely:

®3)

W (1) = (1:+\/2:CT—1——C) N (a:—\/zs—cm) |

where c is a parameter and where n > 1 is the degree of the polynomial W, (z;c). Moreover,
it has been proved in [2] that the function:

z+vVz?+c " z—vVzl+e "
y=Ci|\————| +C|——F—] , 4)
2 2
is the general solution of the differential equation:
(22 + )y +xy —n’y=0,224+¢>0, neN. (*)
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The polynomial W, (z;c) given by (3) contains the well-known Pell polynomial when ¢ = 1
and the Fibonacci polynomial when ¢ = 4.
In this paper we give further extensions of this result.

2. BASIC LEMMAS

Lemma 1: Let 59, © € C?(J) be real-valued functions of z, where J = (z;,z2) C R and
u # 0 on J. The function y; = sgu?, with non-zero real constant ), is the particular solution
of the differential equation:

Doy" + D1y’ + Day =0 (2.1)

if and only if there exist the functions sq, s, € C?(J) such that

Dgsy + Disy -+ Dasg = 0. (2.2)

Proof: Suppose that the function y; = spu” is the particular solution of (2.1). Then we
have Dyyy + D1y} + Doy = 0 and by the assumption on the functions s and u it follows that

7
yll = SB'U,}‘ + SQAU)‘_Iu/ — 'U,A (36 + )\So%) . (23)

Putting

7

§1 = 86 -+ )\So% (24)

in (2.3) we have 4} = s1u*. In a similar manner we obtain
o
Y = (Slu)\)’ = S’l’u,’\ + A0y = ot <3'1 + Asy Z) . (2.5)

Putting

14

g2 =87+ )\51% (2.6)

in (2.5) we have ¢/ = spu?, and therefore we obtain Dy} + D1y} +Day1 = Dosau™+Dysiu” +
Dg&ou;\ = UA(DQSQ + Disy + DgSo) = 0.
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Since u # 0 on J then (2.2) follows from the last equality. Now, we suppose that (2.2) is

satisfied by some functions s, 51,52 € C2(J). Then we have
DOSQUA + Dlslu’\ + Dgso’u,’\ =0. (27)

Putting y; = sou” in (2.7) we obtain 3} = s;u* and 4 = ssu®, where the functions s; and
so are defined by the formulas (2.4) and (2.6), respectively. Hence, Doy + D1y} + Day1 = 0,
and the proof of Lemma 1 is complete. O

Lemma 2: Let s¢,%,u,v € C%(J) be real-valued functions of z and let u # 0, v # 0 on J.

Then the functions
A

y1 = sou” and yp = tov (2.8)
are particular solutions of the differential equation:

Doy" + D1y’ + Doy = 0, (2.9)

if and only if the functions s;,%1, 82, and ¢2 are given by the formulas:

/ / 7 /

u v
81 = 36 + )\Sog—,t1 = tf) + /\tog-,SZ = 8’1 + Asl—,tz = tll + /\tl—, (2.10)
u v u v
and
S0 81 82 8o 81 82
= = = . 2.11
Do det (to t ) ,D1 det <t2 to) ,D2 det (tl tz) ( )

Proof: From Lemma 1 it follows that the functions y; = sou* and yz = tov* are particular
solutions of the equation (2.9) if and only if

Dgsy + Dqs1 + Dasg = 0 and Dgts + D1ty + Doty =0, (2.12)

where the functions s, s2,%1, and ¢3 are defined by the formulas in (2.10). Now, we consider
the determinant:

S0 81 82
W1 = det So S1 82 . (213)
to t1 to

It is easy to see that W; = 0, and by Laplace’s theorem we obtain

81 82 82 8o So S22\ _
sodet (tl t2> + sy det (t2 t0> + sadet (to t1> =0. (2.14)
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Denoting Dy = det %o 51 , D1 = det 52 %o , Dg = det B1 %2 , in (2.14) we obtain
to 11 ta 1o t1 ta

Dgss + Dys1 + Dgsg = 0. In a similar manner we consider the determinant:

to 11 fa
W2 =det to t1 tz (215)
8g 81 829

As in the previous case we obtain that Dgty + Dyt; + Dt = 0 and the proof of Lemma 2 is
complete. O

From Lemma 1 and Lemma 2 we deduce the following lemma:

Lemma 3: Let A be a non-zero real constant and let u,v € C?(J) be a non-zero real-valued

functions, linearly independent over R, where J = (z1,22) C R. Then the general solution of
the differential equation:

1 " g 1 7
det:(1 )y +det(h 1>y +)\det<

14 I 2 i ! 2
where g = % — (1 - ) (%) and h= 2" —(1-1) (%) is of the form

SICEE
el (e

Nymo,

y = Cru* + Cav?, (2.16)

where C} and Cs are arbitrary constants.

Proof: Putting sg = fp = 1 in Lemma 1 and Lemma 2, we obtain s; = )\%,tl = %I and

7 " 7 2 7 i1 ! 2
32=33+A31%=A<1‘;—(1»>\) () ):Ag,tz:t’1+>\t1%:A(”T—(1—A)(%) ) =

Ah. Hence, we have

7

Dozdet(1 A‘i) :)\det(l
1 2% 1

v

Dlzdet(jz i>=det(3\\z D:,\det(g i) (2.18)
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SERICY

> (2.17)
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7 7
51 8 AL ) L
Dy=det ' %) =det "% ") =xdet| » J). (2.19)
t1 i AL Xh L h

From (2.17)-(2.19) it follows that equation (2.9) reduces to (**), hence by Lemma 2 it follows
that the functions y; = u*, and y» = v* are particular solutions of (**). It suffices to prove that
the functions y; and y, are linearly independent over K. To this end consider the Wronskian
of these functions

A A
U v — — U v
W('!ll; y2) = det (ZZ ZZ) = det ()\'U,}‘_lu’ /\,UA—I,U/> = "ot 1. det (u/ o

>(é.20)

By the assumptions that v # 0, v # 0 it follows that det (3, :j,) # 0 on J and

consequently from (2.20) we see that W(y1,y2) # 0 on J. Therefore the function
y = Ciy1 + Cayz = Cru* + Cv*
is the general solution of the differential equation (**). The proof of Lemma 3 is complete. [J
3. THE RESULTS

In this part of our paper we obtain some new classes of second order differential equations
which are effectively integrable and with general solutions given in explicit form (Cf. [4]).
Namely, we prove of the following theorem.

Theorem 1: Let the functions a,b € C?(J), J = (z1,%2) C R be real-valued and non-zero in
z such that az # +bzx on J, and let a, b be linearly independent over R. Then the function

y = Ci(a(z) + b(z))" + Cz(a(z) —b(<))" (3.1)

where C; and C, are arbitrary constants and n € N is a general solution of the differential
equation:

Po(z)y" + Pi(z)y’ +nPx(z)y =0, (***)

where
Py(z) = (a(z)® — b(z)) (' (2)b(z) — ¥ (z)a(z)) = F(2)G(x) (3-2)
Py(z) = (a"(2)b(z) — V" (2)a(z)) F(z) + 2(n — 1)G(a)(d (@)ale) — ¥ (0)b(z))  (3.3)

Py(z) = (t'(z)a (z) — a" (@)t (2)) F(z) — (n — 1) (@' (2))* = ¥'(2))*) G(z) ~ (34)
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Proof: Let u = a(z) — b(z), v =a(z) + b(z) and let y1 = u™ and y, = v", where n € N.
Then by Lemma 3 it follows that

!

1 2N d(x)bz) -V (z)a(z) _G(x)
o —~> =TT b F@) @5)
o (1 1) = 2R P ) |y o) V5 g
L og\ _ 20" (@a(m) —a" @V () . _ (@@)?— ¥ ®)?) i
det<yﬂ_, h) - o) An—1) = o) Glz). (3.7)

Substituting (3.5)-(3.7) in (**) of Lemma 3 we obtain, after some calculation, that (**)
reduces to the equation Py(z)y” + Pi(z)y’ + Pa(z)y = 0 with the functional coeflicients
Py(z), Pi(z), and Py(z) as given by the formulas (3.2)-(3.4). It remains to prove that the
functions v = a(z) — b(z) and v = a(z) + b(z) are linearly independent over R under the
assumption that the functions a(x) and b(z) are linearly independent over R. To this end we
consider the Wronskian

_ _ a(z) —b(z) a(z)+b(z)
W (v, v) = det (3’ :,']') = det (a’(m) —b(z) d(z)+ b’(w)) )

From the well-known properties of determinants it follows that

W(u, v) = 2det (:,((Z)) ;’,((‘;))) , (3.8)

From (3.8) and by the assumptions of the theorem about the functions ¢ and b it folllows that
W{u,v) # 0 on J and the proof of Theorem 1 is complete. [J
Using Theorem 1 we obtain the following:

Theorem 2: The general solution of the differential equation

Fo(z)y" + Fi(z)y + Fa(z)y =0 . 1ty
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with coefficients Fy(z), Fi(z), and Fa(z) given by the formulas
Fo(z) = 2(bz + c)(bx + 2¢)(z? + bz + ¢) (IT)
Fi(z) = Az(bz + ¢) + 2(n — 1)b(bz + 2¢)(z® + bz + ¢)
1
Fy(x) = 5(2A(bz +¢) + A(n — 1)(bz + 2¢))

where A = b? — 4c is the discriminant of the polynomial f(z) = z? + bz + ¢ and bz + ¢ # 0
and bz + 2c¢ # 0 on J = (z1,22) C R is of the form

y=0 (I1I)

<$+\/:c2+bz+c>n+c (a:—\/x2+bzl:+c>n
2 ]
2 2

where Cy and C; are arbitrary constants and n € N.
Proof: Let a(z) = £ and b(z) = 1+/x% + bz + c. Then we have a’(z) = 1 and

2z +b A
b(r) = ——=———, soa”’(z) =0 and bV"'(z) = — )
(=) 4Vz? +br+c (=) (=) 8(z2 +br+c)Vz?+br+c
Using formulas (3.2)-(3.4) from Theorem 1 we obtain
(bz + ¢)(bz + 2¢)
PO(‘T) = )
32vVz2+ b+ ¢

Az (bz +c) + 2(n — 1)b(bx + 2¢)(z* + bz + )
64(z2 4+ bz + c)Vz? +br+c ’

P1($) ==

(z) = 2A(bz + ¢) + A(n — 1)(bz + 2¢)
2 128(z2 + br + c)Vr2 + bz +¢

From the last formulas it is easy to see that the equation reduces to the equation (I) with
the coefficients given by (II). Therefore, it remains to prove that the functions a(z) = £ and
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b(z) = 2+/22 + bz + c are linearly independent over R, if bx+2c # 0 on J. Let W{(a,b) denotes
the Wronskian of the functions a¢ and . Then we have

W (a,b) = det ( o(z)

i@ vi) = (] %m): L

2 4—;@% 8/r fbzt+c
From the last equality it follows that W(a,b) # 0 on J, because bz + 2¢ # 0 on J.

The proof of Theorem 2 is complete. I
Now, we observe that the result described in Introduction follows immediately from The-
orem 2 in the particular case where b = 0.

4. FUNCTIONAL RECURRENCES AND GENERALIZED
HORADAM-MAHON FORMULA FOR PELL POLYNOMIALS

In [3], Horadam and Mahon consider a matrix method in the investigation of some classes
of polynomials such as the Pell polynomials P, (z). They proved that for every natural number
n, we have

Py1(2) Prya (@) — Pr(z) = (1", (4.1)

where P,(z) is defined by the recurrence formula:
Po(x) = O, PI(IL') = 1, Pn+2(.’lf) == 2.’L’Pn+1($) -+ P-,,,(.Z') (42)

In [1], the authors have considered the functional matrix

-u0= (5 43)

Let TrA(z) # 0 or det A(z) # 0 on J = (z3,z2) C R and let

r =r(z) = TrA(z) = a(z) + d(z), s = s(z) = — det A=), (4.3)
and
uo = up(z) =7, w1 = ui(x) = rue(z) + s. (4.4)
Let
Un(Z) = rtp-1(x) + sup—2(z), forn>2, (4.5)
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be a functional recurrence sequence associated with the matrix A = A(z). Then for every

natural number n > 2, we have, in [1],

nip) — [(ME)  b(x) " _ [ (@) un—s(x) + vn2() b(2)ttn_a(z)
A™(z) (C(w) d(fv)) ( () tg—a () d(x)un_2($)+vnm2($)>7 (4.6)

where
Up—2(Z) = sup—3(x) for n > 3 and u_y(z) =1 for n = 2. 4.7

From (4.6) and (4.7) it follows that the formula (4.8) holds for the recurrence sequence
un(z) defined by (4.4) and (4.5):

U —3(2) = Un(&)un—2(z) = (det A(z))" (4.8)

for every natural number n > 2. Now, we deduce from (4.8) the Horadam-Mahon formula for
Pell polynomials. Indeed, let a(z) = d(z) = z and b(z) = c(z) = V&2 + 1. Then the matrix
A(z) = P(z) has the form

PO = (o ), @9)

and the recurrence sequence P,(z) associated with the matrix P(z) satisfies the following
conditions:
r=TrP(z) =2z, s = —det P(z) =1, (4.10)

and
P (z) = rPy_1(x) + sPy_2{z) = 22P~1(x) + Pp—2(z). (4.11)

Here, P,(z) denotes the Pell polynomial. Replacing u,(z) by P,(z) in the formula (4.8) we
obtain the Horadam-Mahon formula for Pell polynomials.

In the same way we produce more general formulas connected with classes of polynomials
Wi (z; b, ¢) considered in Theorem 2. Namely, we have the following:

a, 0 v 2 3 o
Proposition 1: Let W(z;b,¢) = (\/;Z%E? N +mb$ te be a 2 x 2 functional matrix

and let W, (z; b, ¢) be the functional recurrence sequence associated with the matrix W{z;b,c)
defined by the formulas:

r=TrWx;b,c) =2z, s = —det W(z;b,¢)
=—(z? — (¥ + bz +c)=bz+c
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and
Wo(z;b,¢) = r = 2z, Wi(z;b,c) = rWo(z;b,c) + 5 = 4x® + bz +¢

and for n > 2
Wa(z;b,c) = rWy_1(z; b, ¢) + sWh—a(z; b,¢) = 2sWyp—1(z; b, ¢) + (bx + )W, —2(x; b, ¢).
Then for every natural number n > 2 we have
W2_,(z;b,¢) — Wy—2(z; b, ¢) Wy (z;b,¢) = (det W(z; b, )™ = (—1)"(bzx + c)™.

Proof: In the first step, by inductive manner as in [1], (pages 116-117), we obtain an
analog of formula (4.6) for the powers of the matrix W (z; b, ¢), using the recurrence sequence
Wh(z;b,c). The final step relies on applying Cauchy’s theorem on product of determinants. O

In a similar way as in [1], (pages 118-119) we obtain the following:

Proposition 2: Let k be a non-zero constant and let @ = a(z) and b = b(z) be given functions

of the variable z. Then for every natural number n we have

(6 @) = (56 =26)

where

((a@) + b(@)VE)" + (alz) - b(z)VE)")

DI |

Ra(e) =
and

S(z) = 2—1\/*5 ((a(@) + b(&)vE)" ~ (ale) ~b(=VE)"). D

Putting k£ = 1 in the last equalities we obtain an explicit connection between the functions
u(z) = a(z)—b(z) and v(z) = a(z)+b(x) considered in Theorem 2 with powers of the functional
matrices and the corresponding functional recurrences.
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