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1. I N T R O D U C T I O N . V1ETA D I P T Y C H 

Two separate, but related, matters are discussed in this communication. One presents a 
few basic properties of Vieta convolutions, the other offers an outline of the main features of 
rising and falling diagonal polynomial functions for the Vieta polynomials. 

Vieta polynomials are of two kinds [7], the Vieta-Fibonacci polynomials Vn(x) and the 
Vieta-Lucas polynomials vn(x)3 defined for our purposes by generating functions as, respec-
tively, 

oo 
YtVn{x)yn-1 = [l~xy + y2]-\ F0(x) = 0, (1.1) 

and 

oo 
Yjvn{x)yn = t2-xy)[l-xy + y2)-1. (1.2) 

.n=0 

Combinatorial^ Binet form and recurrence definitions of Vn(x) and vn(x), along with many 
detailed properties of these polynomials^ are provided in [7]. One might also consult [14] for 
other facets of Vn(x). Vieta polynomials are so named to honour the French mathematician 
Vieta (Francois Viete? 1540-1803.) 

A Value of Convolu t ions 
Why do we give emphasis to a study of convolutions defined in terms of generating func-

tions? 
Looking at (1.1) and (2.1), we see immediately that Vn(x) is a special case of Vn (x) when 

k = Q: Viewed reversely^ Vn (x) is a generalization of Vn(x). For the author, the importance 
of a study of convolutions lies in this dual perspective. 

Similar comments apply to vn(x) (1.2) and vn \x) (2.8). 
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2. V i E T A C O N V O L U T I O N S 

Vieta-Fibonacci Convolut ions 

Definition: The kth Vieta-Fibonacci convolution Vn (x) of Vn{x) is generated by 

OG 

V ^ f ) ( x ) ! / « - 1 = [ l - a ; | / + / ] - ^ + 1 ) , Vo
{k\x) = 0. (2.1) 

n=I 

For the explicit representation of the polynomials Vn (x) see Theorem 2 (2.1?) and The-
orem 1 (2.16) when k = 1. 

Examples: 

v}1}(x) = 1, V?\x) = 2x, V^\x) = 3x2 - 2, V^(x) = 4x3 - 6x, 

V$l)(x) = 5x4 - 12x2 + 3, F6
(1)(x) = 6x5 - 20x3 + 12x , . . . . 

Evaluation of higher order convolutions (k > 2) is left to the inclination of the reader. 
Note that K(0)(x) = Vn(x) by (1.1), (2.1). 

Basic P r o p e r t i e s of V„ (x) 
Immediately from (2.1) 

V^-l\x) == V^(x) - xV^x) + V<%(x) (k>l,n> 2). (2.3) 

Differentiate (2.1) partially with respect to y after replacing k by k - 1. Then 

(n - l ) ^ * " 1 ^ ) = & (xVfMx) - 2V™2(xj) . (2.4) 

Eliminate Fn
(fc""1}(x) from (2.3) and (2.4) to derive 

(n - l)VW(x) = (n + fc - l ) * ^ * ^ ) - (n + 2& - 1 ) F J ? 2 ( X ) » (2.5) 

Now write 

£vn(x) = K(ar), £ ^ M = C ( x ) , . . . , ^-kVn(x) = V*(x). (2.6) 
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Differentiating (1.1) fe-times with respect to y, we arrive at the neat result 

V«(x) = k\vWk(x). (2.7) 

Vie ta-Lucas Convolut ions 

Definition: The kth Vieta-Lucas convolution Vn (x) of vn(x) is generated by 

oo 

J2 v{
n
k)(x)yn = (2 - xy)k+l[l -xy + y2]'^ (2-8) 

n—0 

so that v{n\x) = vn(x) by (1.2), (2.8). 
For the explicit representation of the polynomials Vn (x) see Theorem 3 (2.19). 

Examples : 

v£\x) = 4,v[1](x) - 4x,vi1)(x) = 5x2 - 8,v£\x) = 6x3 - 16x, 

v[1] (x) = 7x4 - 26x2 + 12,4X ) 0*0 = 8xb - 3Sx3 + Mx,.... (2.9) 

Because of the nature of the complicated algebra involved (unappetizing mental pabu-
lum!), we restrict our treatment to the simplest case k = 1. 

Basic P r o p e r t i e s of uh, (x)(k — 1) 
Proceeding similary as in (2.3)-(2.5) for Vn(x), we extract the following essential relation-

ships: 
& ( * ) = wW(x) - AxV^x) + x2V™2(x), (2.10) 

nvn{x) = xV£\x) - 4 ^ * ) + xV^2(x), (2.11) 

nxvn(x) = (x2 - 4)vW{x) + vl'l^x). (2.12) 

Observe the rather different sorts of equations (2.10)-(2.12) here compared with those 
in (2.3)-(2.5), as a consequence of the primacy and simplicity of the generating function for 
V?\x). 

Lastly, if we multiply numerator and denominator of (2.8) when k = 0 by 1 — xy + y2, 
then the ensuing algebra reduces to 

vn-x{x) = 2V£\x) - 3xFi i \ (x ) + (2 + x2)V™2(x) - xV<%{x). (2.13) 
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Closed Forms 

Lemma 1: 

N -r\ fN-r~l\ /JV~ - r\ {N-r- 1\ (N - r 
+ 2l , r _ ! -»[ r )• <2») 

Lemma 2: 

, f (N + Jfc - 1 - r\ (N - r - 1\ /JV + A; - 1 - r\ fN - r - 1\ 1 
H I * ){ r J + 2 ( * ){ r-1 J} 

Both lemmas are readily established by routine combinatorial calculation. Clearly, Lemma 
1 is a special case of Lemma 2 occurring when k = 1. Observe that in (2.15), the factor k is 
absorbed into the product and N emerges as a factor. (See also [8, (2.11a), (4.12a)] where the 
same two formulas (2.14) and (2.15) appear.) 

Theorem 1: 

VP{x) = ^ ( - l ) ' (n ~ r) (" _ ; " 1)*-s*-1. (2.16) 

P r o o f (by induc t ion) : 
The theorem is verifiably valid for n = 1,2,3 (say). Assume that it is true for n = N, 

that is, assume 

^1,(*) = I E 1 ( - D - r 1 ' i r ; > " — w r ( D / ^ _ V - / n r ^ - ^ ^ - ^ - l N AT-2T-1 

r = 0 
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Then, with n ->• n + 1, the right-hand side of (2.5) transforms to 

N Mf~\-vW xV^(x) - V£iiO»0 + WW = 2V^\(x) r ( l ) / „ . N _ o T r ( l ) 

= ^ E ( - i r ( ^ ~ r ) ( * - , V - * +ATX} ( ^ r " r ) ^ - a p by (i),Lemma 1 
r=0 ^ ' ^ ' r=0 ^ ' 

^| (_ l f("-;+')("-)x»- (B) 

= * ! # > , ( * ) (C) 

which must be the left-hand side of (2.5). 
Consequently, (B) and (C) together with (A) reveal that (2.16) is true for all values of n. 

Accordingly, Theorem 1 is fully established. 
T h e o r e m 2: 

e>« - 'E (-D' ("+Y- 0 (" T 0 •^,- (2-17) 

P r o o f (by Induc t i on ) : Follow the procedures in the proof of Theorem 1 while utilizing 
Lemma 2. (Pascal's Formula is needed in both Theorems 1 and 2.) 

Examples : 

„<*>=!, F<»W=(Y)X, v<»w=(Yy-(Y). 

w"*=(Y>3-2(Y>"- <2-is> 
as may be checked by (2.1). 

By virtue of the generating functions (2.1) and (2.8) for Vn (x) and vn
k\x) respectively, 

and in view of Theorem 2, it is clear that Vn (x) may be expressed combinatorially in sum-
mation form involving the Vieta convolutions. 
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T h e o r e m 3: 

r=0 ^ ' 
(2,19) 

where v£jr+1(x) are given in-(2.17). 

Proof: Expand (2—xy)k+1 in conjunction with (2.1) and (2.8). Theorem 3, as enunciated, 
then follows. 

Examples : 

4%)=2*+\ vik\x)=2*(k+
i
iy 

..(*) v?>(x) = 2 fc-i A + 2 2 1 , ; 1 ) + ( , r 5fc + l f'* + 1 
(2.20) 

Putting k = 1 in (2.20) reduces these expressions to those in (2.9). Theorem 1 corresponds 
to Theorem 3 when k — 1. 

A Ques t ion Answered . 
In [7], some elegant results connecting Vieta, Jacobsthal, and Morgan-Voyce polynomials 

with special arguments | , — x2
1 —^ were revealed. Note that in the definitions of Jacobsthal 

polynomials Jn(x) and Jacobsthal-Lucas polynomials jn(x) given in [6] and [8], the factor 2x 
is here replaced by x as in [7]. 

At the Luxembourg International Fibonacci Conference (July, 2000) the question was 
asked: 

Can these special results be carried over to convolution theory? 
Sadly, the answer is: generally, NO! 
Happily, however, there is one positive instance, namely,. 

Theorem 4: 
FW(x) = x«-14fc)(-^J. (2.21) 
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Proof: 
(a) By Theorem 2 and [7, Theorem 1], both expressions are equal to the combinatorial sum-

mation 

2 

with the same initial values 0 and 1 for n = 0,1. 
(b) Working from the recurrence relation [8, (4.13)] for x n - 1 J n (—p") we quickly have, on 

multiplying throughout by a;71^1, 

which is identical with (2.3) for xn'"1Jn (— p-) = Vn (#), both of which have initial 
values 0 and 1 for n = 0 ,1 . 

Note: 
(i) An analysis of the expansion of the generating function 1 — y — ^ for J^+i (~~^r) 

leads us to a verification of Theorem 3 for Vn (a?), for small values of n. 
(ii) No such joys as in Theorem 4 await us when we turn to vn (x) and j n (—^-)j as is 

evident from the more complicated forms of their generating functions. 
Coming to Morgan-Voyce convolutions, we find there is no connection with Vieta and 

Jacobsthal convolutions for the above special arguments, since the essential provisos in the 
Proofs in Theorem 4 do not pertain. [Parenthetically, we remark that even the beautiful 
Cinderella had less attractive sisters!] 

Cauchy Product 
Convolution polynomials Vn (x)(i = 1 , . . . , k) may also be defined by means of summa-

tions of Cauchy products, thus: 
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Definition: 

r=l 

Ki2)W = EK(1)WK,+1-r(x), 
r = l (2.22) 

V(k\x) = J2Vrk-\x)Vn+l-r(x). 
r - 1 

Examples : 

V^1](x) = 2Vt(x)V5(x) + 2V2V4(x) + (V3(x))2 = 5x4 - 12x2 + 3 as in (2.2), Theorem 1. 

VJ2)(x) = V ^ O ^ O * ) + F2
(1)(x)F3(x) + V3

{1\x)V2(x) + F4
( 1 ) (x)^(x) 

= 10x3 - 12a; as from (2.18), k = 2. 

Cauchy products may likewise define the Vieta-Lucas convolution polynomials Vn(x)(i = 
i , . . . , * ) . 

Definition: 

VnHx) = 5 ^ V r ( a ? ) V n - r ( « ) , 
r = 0 

t;«(a:) = X;41)(*K-r(a:), 
r = 0 (2.23) 

Wnfc)(*) = S t ' * 1{x)Vn-r{x). 
r = 0 

Examples: 

^ ( a : ) = 2v0(x)v4(x) + 2v1(x)v3(x) + (v2(x)f = 7x4 - 26x2 + 12 
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as in (2.9) 

= 2 5 x 3 - 6 0 , as from (2.20), fc = 2. 

Thus, there exist three ways of calculating, say, v^ (x) = 18x2 — 24, namely: (i) directly 
from (2.8), k = 2,ra = 2 (ii) by substituting k = 2,ra = 2 in (2.20) [equivalent really to (i)], 
and (iii) by using the Cauchy product (2.23). 

R e m a r k s : 
(a) Generally, we may extend (2.22) to 

n 
V.W(x) = £ Fr(™)(x)F^7l; r o )(x) (m = 0 , 1 , . . . ,k - 1). (2.24) 

r = l 

Likewise for t4 j(x). 
(b) Cauchy products as in (2.22-2.24) are applicable analogously to Jacobsthal-type polyno-

mials [8], Morgan-Voyce polynomials [9], Fermat-type polynomials [10], and to Pell and 
Pell-Lucas polynomials (for which see A.F. Horadam and Bro. J.M. Mahon: "Convo-
lutions for Pell Polynomials," Fibonacci Numbers and Their Applications (Eds. A.N. 
Philippou, G.E. Bergum, and A.F. Horadam), Kluwer Academic Publishers, Dordrecht, 
The Netherlands (1986): 55-80). 

Var ia t ion on a T h e m e 
Suppose we replace -hy2 by — y2 in (2.1) and (2.8). Designate the ensuing modified poly-

nomials by *14 \x) and *vb (x) respectively. Of course, it then transpires that 

*VW(x) = F<*\x), *v^(x) = L™(x), (2.25) 

where Fi (x) and L„ ' (x) are the generalized Fibonacci and Lucas kth convolution polynomi-
als, respectively. In fact, for example, *VQ(X) — 6x5 + 20x3 + 12a;. 

Mindful that *v£ \l) — Fn, the nth Fibonacci number, we may build up the Fibonacci 
convolution sequences as, e.g., 

{*F„W(1)} = {FW} = {1,2,5,10,20,38,71,130, . . .} , 

{*V^(1)} = {F™} = {1,3,9,22,51, 111, 233 , . . . } , (2.26) 

{*Fj3)(l)} = {F™} = {1,4,14,40,105,246,594,. . .}, 
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which may, for visual convenience, be expressed in tabular form. Calculations in (2,26) have 
involved (2.5), (2.17), and (2.18). Verfications may be obtained by recourse to V.E. Hoggatt, 
Jr. and G.E. Bergum, "Generalized Convolution Arrays", The Fibonacci Quarterly 13.3 (1975): 
193-196. Sequences occurring in (2.26) appear in the table on page 118 of V.E. Hoggatt, Jr. 
and Marjorie Bicknell™Johnson, "Fibonacci Convolution Sequences", The Fibonacci Quarterly 
15.2 (1977): 117-122. 

3 . V I E T A D I A G O N A L P O L Y N O M I A L S 

P r e a m b l e 
While sorting out ideas on rising and falling diagonal functions for Vn(x) and vn(x), the 

author became aware of the generalized survey in [15] covering similar work already done for 
Fibonacci, Lucas, Chebyshev [1], [3], [12], Fermat [3], and Jacobsthal [6] polynomials. 

To these polynomials we specifically add the earlier study of Pell polynomials [13] and 
Gegenbauer polynomials [11] (rising diagonals) and [5] (descending diagonals). Work on 
Morgan-Voyce rising and descending diagonal polynomials is under investigation. 

Each polynomial has an individual essence distinguishing it from others. Our justification 
for treating Vieta diagonal polynomials as separate entities and not just as particular instances 
of a general situation is that it preserves the distinguishing features of these polynomials and 
so it enhances our knowledge of Vieta polynomials per se. 

The slanting criss-cross pattern of rising and falling parallel diagonal "lines" is visually 
apparent for the polynomials displayed in [2], [3], [4], and [11]. Incidentally, both kinds of 
Chebyshev polynomials are special cases of Gegenbauer polynomials [5, p. 294], [11, p. 394]. 

Ris ing V i e t a Diagonal Polynomia ls 
Represent these polynomials for Vn(x) and vn(x) by Rn(x) and rn(x) respectively. Then 

the following fundamental conclusions are relatively easy to establish. 

Generating Funct ions 

oo 

Yt
Rn^)yn~l=V--y^-y2)\~\ Ro(x) = o. (3.i) 

n=l 

oo 

J^rn(x)yn-1 = (l-y3)[l-y(x-y2T1, r0(x) = 2. (3.2) 
71 = 3 

R e c u r r e n c e Rela t ions 
Rn(x) = xRn-i(x) - Rn-sfa). (3.3) 
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rn(x) = x r n - i ( x ) - rns(x). (3.4) 

rn(x) = Rn(x) - Rnsix). (3.5) 

Computation of the Rn(x) and rn(x) in (3.1) and (3.2) is left to the dedication of the 
reader. 

Descending Vieta Diagonal Polynomials 
Designate these polynomials for Vn(x) and vn(x) by Dn(x) and dn{x) respectively. Ana-

logues of the generating functions and recurrence relations for Rn(x) and rn{x) are straight-
forward to discover. 

Generating Functions 
Dn(x) = (x-l)n-\ D0(x) = Q, (3.6) 

dn(x) = (x- 2)(x - l ) n - \ d0(x) = 2, (3.7) 

whence 

Djx)=X~2- ( 3"8 ) 

Recurrence Relations 

dn-.i(x) Dn- i (x) 

Partial Differentiation 
Suppose now that we use the generating function symbolism 

G = G(x,y) = [l-(x-l)y]-1 = J2Dn(x)yn-1. (3.10) 
7 1 = 1 

An immediate outcome is that 

Setting 

oo 
H = H(x, y) = (x- 2)[1 - (x - ljp]"1 = £ dn{x)yn. (3.12) 

n = l 

we come to 

<*-'><«-*>£ = <l-»>ff- <"*> 
250 [JUNE-JULY 



VIETA CONVOLUTIONS AND DIAGONAL POLYNOMIALS 

Partial differentiation along the procedures of (3.10) - (3.13) for Rn(x) and rn(x) is a 
suggested exercise. 

4. C O N C L U S I O N 

In passing, we mention that the 1969 formula occurring in [7, reference [1], p. 14], 

[ f ] 

and surely of an earlier origin, is equivalent to the 1999 formula [15, (2.22)] when x — p, y = —q. 
Attention to the valuable material in [15] is strongly recommended. 

Attention might also be directed to the related study of convolutions for generalized 
Fibonacci and Lucas Polynomials in [10]. 

The purpose of this paper has been to give a skeletal framework to the theory which, 
hopefully, could be fleshed out to a more robust body of knowledge. 

Finally, the author wishes to thank the anonymous referee for the careful assessment of 
this submission. 
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