FIBONACCI NUMBERS AND PARTITIONS

José Plinio O. Santos
IMECC-UNICAMP, C.P. 6065, 13083-970, Campinas-SP, Brasil
e-mail:josepli@ime.unicamp.br

Milosg Ivkovié
IMECC-UNICAMP, C.P. 6065, 13083-970, Campinas-SP, Brasil
- e-mail:milos@ime.unicamp.br
(Submitted April 2001-Final Revision September 2001)

1. INTRODUCTION

In a series of two papers [6] and [7] Slater gave a list of 130 identities of the Rogers-
Ramanujan type. In [2] Andrews has introduced a two variable function in order to look for
combinatorial interpretations for those identities. In [5] one of us, Santos, gave conjectures for
explicit formulas for families of polynomial that can be obtained using Andrews method for
74 identities of Slater’s list.

In this paper we are going to prove the conjectures given by Santos in [5] for identities 94
and 99.

We show, also that the family of polynomials P,(q) related to identity 94 given by

Po(g) =1, Pi(g) =1+q+¢° 1)
Pu(g) = 1+ q+¢*)Pa_1(q) — ¢Pa—2(q)

is the generating function for partitions into at most n parts in which every even smaller than
the largest part appears at least once and that the family T, (g) related to identity 99 given by

To(q) =1, Ti(g) =1+ 4° 1.9)
To(q) = (1+ g+ ¢**)Tn-1(g) — ¢Tn-2(q)

is the generating function for partitions into at most n parts in which the largest part is even
and every even smaller than the largest appears at least once.

In what follows we denote the Fibonacci numbers by F, where Fy = 0;F; = 1 and
F,=F,_1+ F,_2,n > 2, and use the standard notation

(A;9)n = (1— A)(1 - Ag)...(1— Ag™™Y)
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and
oo
(490 = [J(1 - Ag™), gl < 1.
n=0
We need also the following identities for the Gaussian polynomials
- 1.3
|m | n— m] (13)
(n] [n—-1 nem|m—1
= 1.4
M N R oo
(n] [n-1 m[n—1
— 1.5
o=l =
where
[n} =—ﬁq)—m——, for 0 <m < n, (1.6)
m| ¢ Pm(e Dn-m

0 otherwise

2. THE FIRST FAMILY OF POLYNOMIALS

We consider now the two variable function associated to identity 94 of Slater [7] which is:

tn n24n

f94(q7 t) Z (t (21)

n=0

10 n+1(tq; ¢ ny1

From this we have that

(1 —t)(1 — tq) fou(g, t) = 1+ tq° foa(g; tg®)

and in order to obtain a recurrence relation from this functional equation we make the following
substitution

foa(g,t) = Z Pt

n=0
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Now we have:

(1-8)(1—19) > Pt =1+1¢> S Palte®)"
n=0

n=0

which implies

co (e o] Cco co oo
DR =Y Polat" =Y qPuat™+ D qPuat® =1+ Y  ¢*"Pu_it”
=0 n=1 n=2 =1

n=1
From this last equation it is easy to see that

Pg)=1 P9 =1+q+¢° 22)
Po(g) = (14 g+ ¢°*)Pa-1(g) — ¢Pu—2(q). '

Santos gave in [5] a conjecture Cy(g), for an explicity formula for this family of polyno-
mials:

= 21e5 [2n + 1 2 ai 2n+1
Cnlg) = ‘}: g7 +“’[ ; ] _ zq1512+14y+3[ ] (2.3)

Plan 7 — 57 n—35j—2

In our next theorem we prove that this conjecture is true.
Theorem 2.1: The family P,(q) given in (2.2) is equal to Cyr(g) given in (2.3).
Proof: Considering that Cy(g) = 1 and Cy(g) = 1 + g + g we have to show that

Crn(g) = (1 + g+ ¢*)Cr-1(g) — gCrn—2(q) that is:

o0

Z 159+ n+11 i gi54” 14543 2n+1
A n — 57 n—5j—2

j=—00 j==— 00

= (1+q+q2") i q15j2+4j 2n—1 _ i qlsj2+14j+3 n—1
n=5j—1] = n—5j—3

j=~00

co Co

_ 2445 2n—3 ] 152 414543] 2n—3 o4
! Eq [n—Sj—Z Eq n—>5j—4 (2.4)

j:—co j=—-oo
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If we apply (1.4) in each expression on the left side of (2.4) we get

co
1577445 | 27 1552495 +n+1 ( n
P [n—5j}+ 2« ln—5j—1

. 2 1552 +14j+3 2n i q15j2+19j+6+n 2n
n—95j5—2 ) n—95j—3

j=—00 j=—o00

Applying now (1.5) to each sum in the expression above and replacing it in (2.4) we get after
some cancellations

1547 +j+4n | 20— 1 15524+9j+n+1| 20 —1
> a [n-—5j + > q n—5j—2

j=—co j=—c0

oo (o o]
-3 157 +0s+n-+4 2n—-1 | Z 157 193+64n 2n -1
n-5j-2 n—5j—4

j=—0 Jj=—o0

Z q15_1 +4j+1 2n -1 i q157 +14j+4 2n—1
n—>5j—1 n—5j5—3

j=—o00 j=—o00

[e o)

2n—3 .2 , 2n —3
_ 1552 4+45+1 15524145 +4
> {n 51—2]+ 2 4 [n—5j—4]' 25)

]_—00 ]"’—'OO

Considering the right side of the last expression and applying (1.4) on the first two sums
we get

o0
2 42 2n—2 2 0 2n — 2
1552+45+1 155%49j+1+n
2« [n_5j_1]+Zq [ ' ]

co o0
_ Z g 157 +14i+4 n—-2 | Z 15710 +6+4n 2n—2
n—>55—3 ) ] —4

e e n—5j—

[e.0] 2 o0
B Z q15j2+4j+1[ n—3 + Z 15" +14i+4 2n—3
n—5j—2 n—5j—4

j=-—c0 j==00
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Applying now (1.5) on the first and third sums on this last expression and making some
cancellations we have that the right side of (2.5) is equal to:

o ¢ 0
E q15j2—j+n 2n—3 4 E q15j2+9j+1+n [ 2n—2 é
: 8-l i ln— 55— 2]

j=—o0 J

oo - fe’s) . -
_ z g5 o+ E In—=3 | 1577197 464m [ 2n—2
n—5j-3 4w ln 554

j=—00 j=—co

If we take now the left side of (2.5) and apply (1.4) to all sums we get:

e co
Z q15j2—j+n{2”“2-]{ + 5 g15j2+4j+2n--1[ 2nf2 1
= n-5i) T n—5-1]

o= 152 -2 ] o= istpisiqonga] 20— 2
1552 +9j+n+1 : 2 414542n42| P 2
2. n—5j—2 "“jqu n— 5§ — 3]
j=—c0 L - o A
[o2e) - - cO - -
e L  Aas n—-2 | 3 157 +14i+2n+2 2n—2
s n—5j-2) 2o 55— 3]
F==— ol - i —
o0 o0} ‘
. Z q15j2+14j+ﬂ+6 gﬂ 2n—2 _ E q15j2+24j-}—2-n+9 n -2 ] _ (2.6)
= ln-5j-4] 2 n—5j—5

Applying now (1.5) on the first and fifth sums of this last expression and making cancel-
lations with the sums from the right side given in (2.6) we are left with:

o0 o0
. . I — 2
Z q15j2—6j+2n F’” 3 + “g‘“ q1532+4~j+2n»~1 &N — 4
_ n— 53 o n—55—1
JE=—00 = - F=—-00
[oce] . 5 9 - 00' ) ) I o ,{
T ] I B -3
R n—5j—3] L ln—55—2
j=--c0 - 4 jm=oo
o N B ce ; r —
. ql5j2+l4j+2n+2 n —~2 B ﬁ15j‘£+24cj+22n+9g 2n -2
E n—5j—3 A= fn—5j—5
j=-oc0 - - j=—00
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Observing that the third sum cancels the fifth and replacing j by j+1 in the last sum we
get after using (1.4)

bad 2n—3
E 915j2+4j+2n+1 n—2 _ Z q15j2+4j+2n—1 n—
n—5j—1 n—35j—2

j:—oo j=—00

- i q15j2—j+3n-2 2n—3
n—58j—1

P—

which is identically zero by (1.5) completing the proof. [J
Next we make a few observations regarding the combinatorics of Py(g) given in (2.2).
Knowing that P,(g) is the coefficient of ¥ in (2.1) that is:

t'n. 'n+'n

Z « (1= 8)(¢0% ¢*)n (805 ¢In+1

and considering that n2 +n=2+4+ .-+ 2n we can see that the coefficient of t¥ in
g

tnqn2+n
(tg% ¢*)n(tg; ¢*)n+1

is the generating function for partitions into exactly N parts in which every even smaller than
the largest part appears at least once. Because of the factor (1 — ¢) in the denominator we
have proved the following theorem:

Theorem 2.2: P, (g) is the generating function for partitions into at most N parts in which
every even smaller than the largest part appears at least once.

To see, now, the connection between the family of polynomials Py (g) and the Fibonacci
numbers we observe first that if we replace g by 1 in (2.2) we have

Fu(1) =3P, -1(1) Pns(1)

and that for the Fibonacci sequence F,, we have also that Fy = 1; Fy = 3 and
Fonto = 3Fan — Fapos
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which allow us to conclude that
Cn(1) = Po(1) = Fonyz
and from these considerations we have proved the following:
Theorem 2.3: The total number of partitions into at most N parts in which every even

smaller than the largest part appears at least once is equal to Fons.
The family given in (2.2) has also an interesting property at ¢ = —1. At this point we

have

Po(-1)=1; P(-1)=1

Pn(“l) = Pn—l(_l) + Pn-~2('1)
which tell us that for ¢ = —1 we have all the Fibonacci numbers, i.e. P,(—1) = F,43. In
order to be able to see what happens combinatorially at —1 we have to observe that when we
change g by —¢q in (2.1) the only term that changes is (t¢;¢?)n+1 and that now the coefficient
of tV is going to be just the number of partitions as described in Theorem 2.3 having an even
number of odd parts minus the number of partions of that type with an odd number of odd

parts. We state this in our next theorem.

Partitions as described in Theorem 2.2
with an with an
" even number of odd paris odd number of odd paris Fravr §Fas
0 3 1 1
1 ¢ e ® ® 3 11
@ ® @
¢ ® ® ®
® ®
2 8 2
@ @ ® o ©® e & o ®
e ® e e ® e
® ® ® ®
® 2 @ ® ®
@ ®
% ® e ® o o
@ e e o © 6ja ® o
@
® ® e ® ® o
® ® ® o % ©
® ®
3 21 3
® ® o |® @ ® 6f© ® ® 2le e & Blgpese
® @ ® 5 ® e o ® 2 6 20 0@
® ® ] e e ®®
o @ @
&9 ® %6000
2 6 @ @ @ 0 G086
» @
® @ ? e
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Theorem 2.4: The total number of partitions into at most N parts in which every even
smaller than the largest part appears at least once and having an even number of odd parts
minus the number of those with an odd number of odd parts is equal to Fy 4.

In the table (2.1) we present, for a few values of n, all the results proved so far. The first
column has n, the second the partitions described in theorem 2.4 with an even number of odd
parts and the third column those with an odd number of odd parts. The fourth column has
Fon 42 which is the total number of partitions in columns 2 and 3 and the fifth column has the
difference between the number of partitions on the second and third column which is Fy 4.

3. THE SECOND FAMILY OF POLYNOMIALS

Now we consider the two variable function given in Santos [5] associated to identity 99 of
Slater [7] which is:

tnqn2+n
(t;6%)n+1(tg; ¢®)n

foolg,t) =

n=0

(3.1)

From this we can get

(1 —t)(1 —tq) foo(g, t) = 1 — tq + tq” foo(q, tq")

from which we obtain in a way similar to the one used to get (2.2) the following family of
polynomials

To(g) = 1; Ta(g) = 1+ ¢

(3.2)
To(q) = (14 g+ ¢*")Tn-1(q) — ¢Tn—2(q)

As for the family (2.2) Santos gave in [5] a conjecture for an explicity formula for (3.2) which
is

s 2,0 [2n+1 > Py n+1

j=—oo ]=—OO

The proof for this conjecture is given in the next theorem.

Theorem 3.1: The family T,(g) given in (3.2) is equal to B, (g) given in (3.3).
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Proof: Considering that Bo{g) = 1 and Bi(g) = 1 + ¢? we have to show that B,(q) =
(1+ g+ ¢®)B,,_1(q) — ¢Bn—2(g) which is:

i 59+ n+1) {‘o‘ g5 +8i+1 2n+1
n—>5j — n—5j5—1

j=—oco j=—o0o

O o
2 g4 2n—1
—(1 2n 1552425 1552 +85+1
=(1+g+a™) ;ooq 'n,—5j—1 zooq n—5j—2
(e 0] co
_ 152425 2n—3 | 1552 485+1| 21— 3 3.4
! -Zq [n~5j—2 .Zq n—55—3 (3.4)
j==0c0 j=-c0
We apply (1.4) on each sum on the left to get
e > 2n ] = 2 2n
155242 1552 4+7j+n+1
2.1 [n—5jJ+.Zq [n-sj—l]
j=—o0 j==—oc0
— 157248541 ] = 15524135 +n+2 2n
— 3% +83 32 +13j+n
qu ln—~53—1] Zq [n~5j—2]
Applying now, (1.5) in all sums we obtain:
co
i q15j2+2j 2n -1 + Z q15j2+3j [2" - 1]
) n—5j—1 ) n —5j
J=—00 J=—00

> 1542 . In—1 -2 . 2n —1
32+ Ti+n+1 V‘ gtoi F2i+2m
+ 2.9 n—5j—2 n—5j—1

j=-—o00 j=—o00

_ i q15j2+8j+1 n—1 | i q15j2+3j+'n, 2n —1 ]
n—5j—2] j

j=—o00 j=-—0o0 L 5‘7 -1

oo

_ i q15j2+13j+n+2 2n—1 _ E q
n—>5j—3

j=—o00 j=—o00

1552 +8j42n| 2 —1
n—5j—2
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Replacing this in (3.4) and making cancellations we are left with:

o o] o0
Z g159° =35+n n—-1 i Z G153 T4t 2n -1 ]
n — 55 n—5j5—2

j=-—o00 j=—o0

co

d 2n —1
_ Z q15j2+3j+n 2n—1 _ Z q15j2+13j+n+3 n—
n—>5j—1 , n—>5j—3

j=—o0 j=—oc0

(3.5)

co co
= Y gt n—11_ Y gueitsiee 2n—1
e n—5j—1 n—5j—2

j=—o0

[ee) oo
_ Y gt -3 1 DO Ak 2n —3
n—sj—2| n—5j—3

j:-—co J=—00

Applying (1.4) on the first two sums on the right side of this last expression we get for that
side:

o) r -

Z q15j2+2j+1 2n—2 n i q15j2+7j+n+1 2n—2
ln — 55 — 1] n—>5j5—2

j=—o0 j=—o0

-

i q15j2+8j [ 2n -2 _ i q15jz+13j+n+1 2n—2
|n—5j — 2] i n—95j—3

—00

J
_ f: g5 +2i+1 -3 i g15” ¥8i+2 2n—3
] n—5j—2 n—5j—3

j=—00 j=—o00

Using (1.5) on the first and third sums we get after cancellations

[o/e] [oe)
Z q15j2—3j+n 2n—3 + Z q15j2+7j+n+1 2n —2
= n—5j—1] . n—5j5—2
Jj=—0C0 J=—00
cO
-y q15j2+33'+n[ n—-3 | i g157* +137 42+ 2n—2
£ n—=5j—2 £ n—>55—3
j=—o0 j=—o0
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Applying (1.4) in all sums on the left side of (3.5) and making cancellations with the corre-
sponding sums on the right we get:

co 2 o0
E q15j2—-3j+n[ n— 2} + z q15j2+2j+2n——1 2n—2
=0 n—5j Pl n—55—1
o0 = [o.0]
, ] 2n — 2 2y o 2n — 2
+ 1512+121+2n+2[ _ 1552435+n
j;mq n—>5j—3 ].;mq n—>55—1

0.0} oo
_ Z g5 +8+2n 2n—-2 | Z g157 183 +2n+4 2n—2
; n—5j—-2] n—5j—4

j=-—o0 j=—o0

[o9)
_ Z q15j2—3j+n n—-3 | i 159" +3i+n 2n—3
n—>55—1 n—55—2

j=—o0 j=—00

Using (1.5) on the first and fourth sums on the LHS we get:

[o o] (o o]

1552—8j+2n |21 — 3 15j242j42n—1| 2n—2
2. 4 [n——Sj R n—5j—1

j=-—00 j=-—00

o
.2 .
+ E : q15_1 +12j+2n-+42

j=—o0

-2 _ i q15j2—2j+2n—1 2n-3
n—>55—3 n—5j—1

j=—00

_ i q15j2+8j+2n -2 | i q15j2+18j+5[ 2n -2 ]__.0.
. n-5j-2] = n—5j—4

j==o00

Replacing 7 by j — 1 in the last sum and using (1.3) that sum cancels with the third.
If we replace j by —j in the fourth sum using (1.3) and subtract from the second by (1.4)
we get finally:

oo

£ o0
1552 —8j+2n 2n—3 155235 +3n—2 2n—-3
>4 [7%—5]’ + e n—5j—1

j=—00 j=-—o00

_ i q15j2+8j+2n 2n—2 _
n—5j5—2

j=—oc0
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To see that this expression is, in fact, identically zero we apply (1.4) on the first two sums
replacing j by —j and using (1.3) on the result which completes the proof.
Considering that Tn(g) is the coefficient of tV in the sum

nqn2+n

2 (1 —t)(tg?; ¢?)n(tq; ¢%)n

n=0

and observing again that n? +n =244+ - -+ 2n we see that the coefficient of ¢V in

tnqn2+n
(tg?; ¢®)n(tq; ¢%)n

is the generating function for partitions into exactly N parts in which the largest part is even
and every even smaller the largest part appears at least once. From the presence of the factor
(1 —¢t) in the denominator we have proved the following theorem:

Theorem 3.2: T, (q) is the generating function for partitions into at most N parts in which
the largest part is even and every even smaller than the largest appears at least once.
Replacing now ¢ by 1 in (3.2) we get

To(1) = 1; Ty(1) = 2
T (1) = 3Tp—1(1) — Ta—a(1).

But for F,, we have
Fi=1, F3=2
Font1=3F2n_1 — Fon—3
which allow us to conclude that
Bn(1) = Tn(1) = Font1

and by these results we have proved.

Theorem 3.3: The total number of partitions into at most N parts in which the largest part
is even and every even smaller than the largest part appears at least once is equal to Fap,41.
For family (3.2) we have also that, at ¢ = —1, we get all the Fibonacci numbers Fy,, n > 2.

To(-1) =1 Ta(-1)=2
Tnh(-1) = Tn-1(=1) + Tp—a(~1)
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i.e., Tn(—l) = Fn+2,’n, Z 0.
If we make the same observation that have made for the first family of polynomials re-

garding the combinatorial interpretation at ¢ = —1 we have proved the following result:

Theorem 3.4: The total number of partitions into at most N parts in which the largest part
is even and every even smaller than the largest part appears at least once and having an even
number of odd parts minus the number of those with an odd number of odd parts is equal to
Fnyo.

Partitions as described in Theorem 3.3
with an with an
" even number of odd parts odd number of odd parts Fanit| Faez
0 ¢ 1|1
1 (] ® e 2 2
® ® [ ] ®
[ ® ®
e ® ®
2 5 3
e e © @
e e
® L]
® ° ® ®
¢ ® L] ® ®
® ° °
®
® e e © o0 @ ®©ee0o © o
® o
3 ® e e oo ® e ® o ® o @0 13 5
e e
® ® ® L]
e 0 0 0/® ©6 0 0gog000
LA X K]
e o @ @ o ...
® ® o
Table 3.1
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In the table (3.1) we present, for a few values of n, all the results proved in this section.
The first column has n, the second the partitions described in Theorem 3.3 with an even
number of odd parts and the third column those with an odd number of odd parts. The fourth
column has F5,,; which is the total number of partitions in columns 2 and 3 and the fifth
column has the difference between the number of partitions on the second and third column
which is F ;9.

4. A FORMULA FOR F,

Using the fact that the Gaussian polynomials given in (1.6) are g-analogue of the binomial

coefficient, i.e., that
. |n n
i o] ()
g+l |m m

we may take the limits as ¢ approaches 1 in (2.3) and (3.3) to get

o0 o0
) e wsi2pas 20+ 1] 152 41a548] 2n+1
s Cn(9) = Jim _Z ? [n—5j pIK n—5j—2
Jj=—00 Jj==00
B i [(2n+1)_( 2n+1 )} )
Pl n — 55 n—>5j5—2
and
(o0} =
. . ; 12n+1 Y 2n+1
1 Bn =1 15]2+2] _ 15548541
i Bn(q) = lim _Z ? n— 5j 2.4 n—5j—1
Jj=—o00 j=—c0
B i [(2n+1) 2n+1 \]_ o 1)
I n —5j n—>5j—1 "
J=-—00

But as we have observed

Cn(l) = F2n+2 and Bn(l) = F2n+1
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which tell us that

e 52 () ()

j=—00
and
o0
2n+1 2n+1
F. =\ _
1= 2, 5) - (2] “2)

5. LATTICE PATHS AND FIBONACCI NUMBERS

In this section we are going to show how to express the Fibonacci numbers in terms of
lattice path.

In Narayana [4], Lemma 4A one can find the following formula

s 5 (7 )Gt )] e

j=—o0

which give the total number of lattice paths from the origin to (m,n) not touching the lines
y=z—tand y=z+s.
But considering that we can write (4.1) and (4.2) as follows

ma= 5 () (TR )] e
L] (s v B (WSt R

we can conclude just by comparing (4.4) and (4.5) with (4.3) that the following theorem holds:

Theorem 5.1: Fy,; is the number of lattice paths from the origin to (n,n + 1) not touching
theliney=x—¢and y=x+ 5 — ¢, where t =1, 2.
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