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1. I N T R O D U C T I O N 

In a series of two papers [6] and [7] Slater gave a list of 130 identities of the Rogers-
Ramanujan type. In [2] Andrews has introduced a two variable function in order to look for 
combinatorial interpretations for those identities. In [5] one of us, Santos, gave conjectures for 
explicit formulas for families of polynomial that can be obtained using Andrews method for 
74 identities of Slater's list. 

In this paper we are going to prove the conjectures given by Santos in [5] for identities 94 
and 99. 

We show, also that the family of polynomials Pn(q) related to identity 94 given by 

Po(«) = l, Pi(q) = l+q + q2 

Pn(q) = (1 + q + q2n)Pn-i{q) ~ qPn-2(q) 

is the generating function for partitions into at most n parts in which every even smaller than 
the largest part appears at least once and that the family Tn(q) related to identity 99 given by 

T0(q) = h T1(q) = l + q2 

Tn(q) = (1 + q + q2n)Tn^(q) - qTn-2(q) 

is the generating function for partitions into at most n parts in which the largest part is even 
and every even smaller than the largest appears at least once. 

In what follows we denote the Fibonacci numbers by Fn where F0 = 0;Fi = 1 and 
Fn = F n - i + F n _2 3 ^ > 2, and use the standard notation 

(A;q)n = (l-A)(l-Aq).--(l-Mn-1) 
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and 

(A-^U^Hil-Aq"), \q\<l. 
n=0 

We need also the following identities for the Gaussian polynomials 
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where 

(QlQ)r 
Q]Q)m(q;q)n-r 

0 otherwise 

-, for 0 < m < n, (1.6) 

2. T H E FIRST FAMILY OF POLYNOMIALS 

We consider now the two variable function associated to identity 94 of Slater [7] which is: 

n„n +n tnq f94(q,t) = V ] 7- ^r j - Y\ ' (2.1) 

Prom this we have that 

(1 - t){l - tq)f9i(q, t) = l + tq2f94(q; tq2) 

and in order to obtain a recurrence relation from this functional equation we make the following 
substitution 

/94(«,*) = £^n*n-
n=0 
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Now we have: 

(1 - i)(l - tq) J2 Pntn = l + tq2J2 Pn(^r 
n=0 n~0 

which implies 

E Pn*n ~ E Pn~ltn ~ E «F»-Ir + E 9P«-2*" = 1 + E <l2nPn-ltn. 
71=0 n = l n=l n=2 n=l 

Prom this last equation it is easy to see that 

Po(q) = l; P1(q) = l + q + q2 

Pn(q) = (l+q + q2n)Pn-i(<l)-<lPn-2(q)-
(2.2) 

Santos gave in [5] a conjecture Cn(q), for an explicity formula for this family of polyno-
mials: 

Cn(q) = E «' 15j^+4j 

J = - 0 0 

"2n,+ 1" 
• i > 15j2 + 14j+3 2n + l 

n - 5j - 2_ 
(2.3) 

In our next theorem we prove that this conjecture is true. 

T h e o r e m 2.1: The family Pn(q) given in (2.2) is equal to Cn(q) given in (2.3). 

Proof: Considering that Co(q) = 1 and Ci(q) = 1 + q + q2 we have to show that 

Cn(q) = (! + (/ + g 2 n ) ^ „ i ( g ) - qCn-2(q) that is: 

j=-oo 
15j2+4j '2n + 1' 

n - 5j J 
y g15^+14i+3 

J = — O0 

2 n + l 
ri — 5j - 2_ 

= (i + <? + <?2n) E ^'2+4J 

{J = ™ O Q 

2 n - l 
n — 5 j — Ij E 15i2+14j+3[ 2 n - l 

¥ In - 5 j - 31 

- g 
i j = -OQ 

Uf+4j 2n-3 
[n — 5 j - 2J 

y ^ g15j2+14j-f3 

j = — o o 

2 n - 3 
ft- — 5j — 4 

(2.4) 
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If we apply (1.4) in each expression on the left side of (2.4) we get 

E % 15j2+4j 2n 
n - 5 jm 

+ \ ^ g^ j 2 +9 i+n+l 

j = — o © 

2n 
n — 5j — Ij 

- Y ^ «15i2+14j+3 

J = - O Q 

2n 
n ~ 5j - 2_ 

y ^ 15j2+19j+6+n 

j = — CX3 

2n 
[n - 5j - 3_ 

Applying now (1.5) to each sum in the expression above and replacing it in (2.4) we get after 
some cancellations 

y gl5j2+j+n 

J=L~OO 

'In - 1 

j=-oo 

2n-l 
n - 5 j - 2 

15jf2+9j+n+4 2 n - l 
[n - 5 j - 2 

j = —OO 

15j2+19j+6+n 2n-l 
\n — 5 j — 4 

y ^ ^i5j2+4j+i 

j = - o o 

2 n - l 
n — 5j — 1 

_ y ^ «15j2 + 14j+4 

j = - o o 

2 n - l 
n - 5 j - 3 

y ^ g i5 j 2 +4j+i 

j = - o o 

2 n - 3 
n - 5 j - 2 

+ y c?15-7'24-14^'4"4 

J = —OO 

2 n - 3 
n — 5j — 4j (2.5) 

Considering the right side of the last expression and applying (1.4) on the first two sums 
we get 

\ T g i5 j 2 +4j+i 

J = — OO 

2 n - 2 
n — bj — 1 

+ y ^ gi5-72+9-?'+i+n 

3=—oo 

2 n - 2 
n - 5 j - 2 

E . 
i = - o o 

15J 2 4-14J+4 2 n - 2 
w - 5 j - 3J 

_ y ^ 15j2+19j+6+n 

J = — (X) 

2 n - 2 
[n — 5 j — 4 

. y ^ gi5j2+4j+i 2 n - 3 ' 
n - 5 j - 2_ + E «: 

J = — OO 

15.f+14J+4 2 n - 3 
Ti — 5j" — 4 
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Applying now (1.5) on the first and third sums on this last expression and making some 
cancellations we have that the right side of (2.5) is equal to: 

j=-oo 

2 ^ - 3 
[ra — 5 j — 1_ 

_j_ y qWf+9j+t+n 
j=—oo 

2n-2 
n — 5j — 2_ 

2 ^ - 3 
n — 5j — 3_ 

y 15i24-19j+6+n 

j = — oo 

2n~2 
n — 5j — 4 

If we take now the left side of (2.5) and apply (1.4) to all sums we get: 

y q15j2-j+n 

i = - o o 

"2ra - 2" 
ra - 5jfJ 

+ \ ^ g15j2+4j+2r^l 

i=™oo 

2 ^ - 2 
\n — 5j — 1_ 

_|_ y 15j2+9j+n+l 

j=-oo 

2ra-2 
n — 5 j — 2j 

+ y g!5i2+14i+2w+2 

J = - 0 0 

2 n - 2 
\n — hj — 3_ 

y 15j2+9i+Ti+i 

j=-~oo 

2 n - 2 
n - 5 j - 2J 

y 15i2 + 14j+2n4-2 2 ^ - 2 
n — 5j — 3_ 

y ^ i5j2+i4j+fi+e 

i=-oo 

2 ^ - 2 
n — 5j — 4_ 

- V a
1 5 i2+2 4i+2 w+9 

j=-oo 

2 n - 2 
n — 5 j — 5_ 

(2.6) 

Applying now (1=5) on the first and fifth sums of this last expression and making cancel-
lations with the sums from the right side given in (2.6) we are left with: 

y Wj2~-6j+2n 

j=—oo 

2n - 3' 
n ~~ 5 j _ 

+ y^ 9
i5J2+4^+2n-1 

j = —CO 

2 n - 2 
\n-5j— 1 

+ y 15j2 + i4i+2n+2 

j = -oo 

2 m - 2 
n - 5 j - 3J 

- V gl5j2+4j+2n-l 2 B - 3 
n — 5j — 2_ 

y 15j2 + 14j+2n+2 2 n - 2 
n — 5 j — 3= 

__ y 15j2+24j-f2w+9 

j = -oo 

2 n - 2 
\n — 5 j — 5_ 
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Observing that the third sum cancels the fifth and replacing j by j + 1 in the last sum we 
get after using (1.4) 

y ^ 15j2+4j+2n+l 

j = - o o 

2n-2 
n — Bj — 1J 

- y 15i2+4j+2n~-l 

j—-oo 

2n~3 
\n — 5j — 2_ 

_ V ^ 15j2- j+3n-2 

j=~-oo 

2 n - 3 
n — 5j — 1 

which is identically zero by (1.5) completing the proof. D 
Next we make a few observations regarding the combinatorics of PN(Q) given in (2.2) = 

Knowing that Pn(o) is the coefficient of tN in (2.1) that is: 

Z^ a _, 
nran ~$"n tnq 

„^0(i-*)(^2;g2)nfeg2)n+i 

and considering that n2 + n = 2 + 4 -\ h 2n we can see that the coefficient of tN in 

n nn +n tnq 
(tq2\q2)n(tq;q2)n+i 

is the generating function for partitions into exactly N parts in which every even smaller than 
the largest part appears at least once. Because of the factor (1 — t) in the denominator we 
have proved the following theorem: 

T h e o r e m 2.2: Pn(q) is the generating function for partitions into at most N parts in which 
every even smaller than the largest part appears at least once. 

To see, now3 the connection between the family of polynomials PN(Q) and the Fibonacci 
numbers we observe first that if we replace q by 1 in.(2.2) we have 

P 0 ( l ) = l ; P i ( l ) = 3 

P n ( l ) = 3 P n - i ( l ) - P n - 2 ( l ) 

and that for the Fibonacci sequence Fn we have also that F-z = 1; F4 = 3 and 

-F271+2 = 3i*2Ti — I*2ra-2 
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which allow us to,conclude that 

Cn(l) = Pn(l) = F2n+2 

and from these considerations we have proved the following: 

T h e o r e m 2,3: The total number of partitions Into at most N parts In which every even 
smaller than the largest part appears at least once is equal to F2N+2-

The family given in (2.2) has also an interesting property at q = —1. At this point we 
have 

P o ( - l ) = 1; P x ( - l ) = 1 

P n ( - l ) = P „ - 1 ( - l ) + P n . 2 ( - l ) 

which tell us that for q = - 1 we have all the Fibonacci numbers, i.e. Py i ( -1) = Pn+i- IQ 

order to be able to see what happens combinatorially at —1 we have to observe that when we 
change q by — q in (2.1) the only term that changes is (tq;q2)n+i and that now the coefficient 
of tN is going to be just the number of partitions as described in Theorem 2.3 having an even 
number of odd parts minus the number of partions of that type with an odd number of odd 
parts. We state this in our next theorem. 
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T h e o r e m 2.4; The total number of partitions into at most N parts in which every even 
smaller than the largest part appears at least once and having an even number of odd parts 
minus the number of those with an odd number of odd parts is equal to FJV+I-

In the table (2.1) we present, for a few values of n, all the results proved so far. The first 
column has n3 the second the partitions described in theorem 2.4 with an even number of odd 
parts and the third column those with an odd number of odd parts. The fourth column.has 
•F2n+2 which is the total number of partitions in columns 2 and 3 and the fifth column has the 
difference between the number of partitions on the second and third column which is F n +i . 

3* T H E S E C O N D FAMILY O F P O L Y N O M I A L S 

Now we consider the two variable function given in Santos [5] associated to identity 99 of 
Slater [7] which is: 

nnn +n-tnq 
f99(q,t) — / 77—5\ 71 ¥T 

^=j(*;92)n+i(«g;?2)n 

(3.1) 

From this we can get 

(1 - t)(l - tq)f99(q, t) = l-tq + tq2f99(q, tq2) 

from which we obtain in a way similar to the one used to get (2.2) the following family of 
polynomials 

T0(q) = l;T1(q) = l + q2 

Tn(q) = (1 + q + q2n)Tn-i{q) - qTn-2(q) 
(3.2) 

As for the family (2.2) Santos gave in [5] a conjecture for an explicity formula for (3.2) which 

is 

Bn(q) = £ q15j2+2j 

3 = -oo 

2n + 1 
[n - 5 j 

. y ^ ^i5j2
+ 8j+i 

j=-oo 

2 n + l 
[n — 5j — 1 

(3.3) 

The proof for this conjecture is given in the next theorem. 

T h e o r e m 3.1: The family Tn(q) given in (3.2) is equal to Bn(q) given in (3.3). 
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Proof: Considering that BQ(q) = 1 and Bi(q) — 1 + q2 we have to show that Bn(q] — 
(1 + q + q2n)Bn-1(q) - qBn^2(q) which is: 

j=—oo 

15j2+2j "2n + 1 V a15i2+8i+l 

j = - 0 0 
n — 5j — 1J 

L (l + g + g2n) J2 J*'**2* 
2n-l 

n — 5j — 1 
- y ^ gi5j2+8j+i 

j = - o o 

2 w - l 
[n ~ 5j — 2_ 

( oo 
E 915/+2j 

j-~oo 

2n — 3 
w - 5j - 2_ 

y ^ ^i5j2+8i+i 

j = - o o 

2 B - 3 
n — 5 j — 3_ 

(3.4) 

We apply (1.4) on each sum on the left to get 

S ^15j2+2i 
3 = -oo 

2n 
n - 5jm 

+ £ g15i2+7i+n+lf 2 n 

j = - o o 
[n — 5j — 1 

. \~^ i5j2+8i+i 

i=~oo 

2n 
n — 5j — 1_ 

T ^ 15j2 + 13j+n+2 

j = - o o 

2n 
[n - 5 j - 2 

Applying now, (1.5) in all sums we obtain: 

y ^ i5j2+2j 

j = ~ o o 

2 n - l 
n — 5 j — 1 + E 9 

j = - 0 0 

15j2+3j 2n - 1" 
n - 5jf. 

+ E 9 15r+7j+n+l 2 n - l 
[n - 5 j - 2. 

+ V g15i2+2i+2" 
j = - o o 

2 n - l 
n — 5j — 1_ 

E ̂  
i=-oo 

15j^+8j + l 2n—1 
n — 5 j — 2_ • E 9 

j = - o o 

15r+3j+n 2 n - l 
n — 5j — 1J 

j = - o o 

15j^ + 13j+w+2 2 w - l 
71 — 5 j — 3_ E « 

i=-oo 

15J""+8J+2W 2w - 1 
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Replacing this in (3.4) and making cancellations we are left with: 

y q15j2Sj+n 

j = ™oo 

'2rc - 1" 
n - 5 j . + E * 

j = - o o 

15j2+7j+n+l 2 r a - l 
n — 5 jf — 2_ 

y * i5j2+3i+« 

J = — OO 

j=—oo 

15J 2 +2J + 1 

2 n - l " 
[n — 5 j — 1_ 

2 n - l 
[ra — 5 j — 1 

J = —OO 

15jz + 13j+n+3 2n-l 
n — 5j — 3_ 

i=—oo 

15j2+8j+2 2 n - l 
n — 5 j — 2_ 

(3.5) 

y ^ ^i5i2+2j+i 

j = — o o 

2ra-3 
n - 5 j - 2 

+ y* g15j2+8j+2 

J = ~ C X ) 

2 n - 3 
n — 5 j — 3_ 

Applying (1.4) on the first two sums on the right side of this last expression we get for that 
side: 

y ^ qisj2+2j+i 

j = - o o 

2n - 2 
n — 5j — 1 

+ V g15j2+7i+n+l 

j = — o o 

2 n - 2 " 
|_n - 5j - 2 

y ^ g i5j 2+8j 

j = - o o 

2 n - 2 
n - 5 j - 2_ 

_ y ^ g i5 j 2 + i3 j +n+l 

j = - o o 

2 n - 2 
™ — 5j — 3 

. y ^ ^i5j2+2i+i 

j=-oo 

2 n - 3 
n - 5 j - 2 

+ y g15i2+8i+2 

j = - o o 

2 n - 3 ' 
n - 5 j - 3 

Using (1.5) on the first and third sums we get after cancellations 

y ^ I5j2-3j+n 

j = - o o 

2 T I - 3 

n — 5 j — 1 
+ Y ^ g15j2+7j-HH~l 

j = - o o 

2r i -2 
[n - 5 j - 2_ 

y g i5 j 2+3j+n 2 n - 3 ' 
[n — 5 j — 2_ 

j = — CO 

15j2+13j+2+n 2 n - 2 
n — 5 j — 3_ 
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Applying (1.4) in all sums on the left side of (3.5) and making cancellations with the corre-
sponding sums on the right we get: 

y ^ ^I5j2-3j+n 

3=-oo 

2n - 2' 
n - 5 j _ 

+ ' Y ^ g 1 5 i 2 + 2 j + 2 n - l 

j=—oo 

2n-2 
[n — 5j — 1_ 

+ E*1 
j= — oo 

. \ ~ ^ g 1 5 j 2 + 8 i + 2 n 

i=~oo 

= E ^" -3j+n 

3=—oo 

n+2 2n- 2 
n - 5j - 3. 

I 2n-2 
[n - 5j - 2 

[ 2 n - 3 ] 
[n - 5j - lj 

\ ^ g 1 5 j 2 + 3 j + n 

J = - o o 

- Y ^ «15j2+18j+2n+4 

j = - o o 

2 n - 2 
ra — bj — 1 

[ 2 n - 2 
[n — 5 j — 4 

j=-oo 

15j2+3j+n 2 n - 3 
n - 5 j - 2_ 

Using (1.5) on the first and fourth sums on the LHS we get: 

V ^ 1 5 j 2 - 8 i + 2 n 

3 — — OQ 

2n - 3" 
[n - 5jJ 

+ V " g15j2+2i+2n-l 2 n - 2 
n — 5j — 1_ 

+ y ^ 15j2 + 12j+2n+2 
i=-oo 

2 n - 2 
n — hj — 3_ 

_ V ^ 1 5 j 2 - 2 j + 2 n - l 

j = - o o 

2 n - 3 
n ~ 5j — 1. 

- V o15i2+8j+2n 
jf=-oo 

2 n - 2 " 
|n - 5 j - 2. £ «•*" +18J+5 

J=--00 

2n-2 
n — 5 j — 4 

Replacing j by j — 1 in the last sum and using (1.3) that sum cancels with the third. 
If we replace j by — j in the fourth sum using (1.3) and subtract from the second by (1.4) 

we get finally: 

y ^ 15j2~8j+2n 

j = - o o 

"2ra - 3' 
n - 5 j . + E « 

j = --QO 

15J 2 ™3J '4 -3TI -2 2 n - 3 " 
[n — 5j — 1 

15j2+8j+2n 2 n - 2 " 
[w — 5j — 2_ 

0. 
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To see that this expression is, in fact, identically zero we apply (1.4) on the first two sums 
replacing j by —j and using (1.3) on the result which completes the proof. 

Considering that Tjv(g) is the coefficient oitN in the sum 

0 0 4-n~Ti2-\-n 

]£(l-t){tq*rf)n(tq;q*)n 

and observing again that n2 + n = 2 + 4 H h 2n we see that the coefficient of tN in 

•t-n „n2+n 

(tq2\Q2)n(tq;q2)n 

is the generating function for partitions into exactly N parts in which the largest part is even 
and every even smaller the largest part appears at least once. Prom the presence of the factor 
(1 — i) in the denominator we have proved the following theorem: 

Theorem 3.2: Tn(q) is the generating function for partitions into at most N parts in which 
the largest part is even and every even smaller than the largest appears at least once. 

Replacing now q by 1 in (3.2) we get 

r 0 ( l ) = 1; T!(l) = 2 

rB(i) = 3rB_1(i)-r„_2(i). 

But for Fn we have 

Fx = 1; F3 = 2 

^2n+l ~ 3F2 n _ i — ^271-3 

which allow us to conclude that 

B n ( l ) = r n ( l ) = F 2 n + i 

and by these results we have proved. 

T h e o r e m 3.3: The total number of partitions into at most N parts in which the largest part 
is even and every even smaller than the largest part appears at least once is equal to F 2 n + i . 

For family (3.2) we have also that, at q = —1, we get all the Fibonacci numbers F n , n > 2. 

r 0 ( - i ) = i ; r i ( - i ) = 2 

rn(-i) = rn_1(-i) + rn_2(-i) 

274 [JUNE-JULY 



FIBONACCI NUMBERS AND PARTITIONS 

i.e., T n ( -1 ) = Fn+2,n>0. 

If we make the same observation that have made for the first family of polynomials re-
garding the combinatorial interpretation at q = - 1 we have proved the following result: 
T h e o r e m 3.4: The total number of partitions into at most N parts in which the largest part 
is even and every even smaller than the largest part appears at least once and having an even 
number of odd parts minus the number of those with an odd number of odd parts is equal to 
FN+2-

1 Partitions as described in Theorem 3.3 
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In the table (3.1) we present, for a few values of n, all the results proved in this section. 
The first column has n5 the second the partitions described in Theorem 3.3 with an even 
number of odd parts and the third column those with an odd number of odd parts. The fourth 
column has F2n+1 which is the total number of partitions in columns 2 and 3 and the fifth 
column has the difference between the number of partitions on the second and third column 
which is F n + 2 . 

4. A F O R M U L A F O R Fn 

Using the fact that the Gaussian polynomials given in (1.6) are g-analogue of the binomial 
coefficient, i.e., that 

Mm 
g-»l 

we may take the limits as q approaches 1 in (2.3) and (3.3) to get 

]imCn(q) = Mm Y] q 15j2+4j "2ra + 1 
[n - 5jJ 

j — — OO 

15j2+14j+3 2 n + l 
n - bj - 2 

= E 
J = — OO 

2 n + l \ / 2n + l ' 
n-^jj \n-5j-2 Cn(l) 

and 

hm Bn(q) = hm \ ^ q 
q-+l X ' g-f l I £-^ 

\ i = -oo 

15j2+2j 2n + 1" 
[n - 5 j i=-oo 

1 5 j 2 + 8 j + l 2 n + l 
n — 5j — 1 

= £ 
j = - o o 

.» - 5 J 7 \ n - 5 j - 1 
Bn(l) 

But as we have observed 

C„(l) = F 2 n + 2 and B n ( l ) = F 2 n + 1 
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which tell us that 

OQ 

F2n+2= Y, 
j = —OO 

and 

OO 

j = -QQ 

5. L A T T I C E P A T H S A N D F I B O N A C C I N U M B E R S 

In this section we are going to show how to express the Fibonacci numbers in terms of 
lattice path. 

In Narayana [4], Lemma 4A one can find the following formula 

CO 

\L(m,n\t,s)\ J2 
j = - o o 

which give the total number of lattice paths from the origin to (m, n) not touching the lines 
y = x — t and y = x + s. 

But considering that we can write (4.1) and (4.2) as follows 

oo 

F2n+2= Yl 
j = — OO 

OO 

j=z-OQ 

we can conclude just by comparing (4.4) and (4.5) with (4.3) that the following theorem holds: 

T h e o r e m 5.1: F2 n+i is the number of lattice paths from the origin to (n^n-h 1) not touching 

the line y = x — i and y = x + 5 — i, where i = 1,2. 

2ra + l Y _ / 2n+l 
n - 5j) \n - 5 j - 2 (4.1) 

2n + l 
n-hj 

2n+l 
n — 5 j — 1 

(4.2) 

m + n 
m — k(t-\- s) 

m + n 
n + kit + s) + t 

(5.1) 

n + (n + 1) 
n - j ( 2 + 3) 

n + ( n + l ) 
n + l + j ( 2 + 3) + 2 

(5.2) 

ra+(n+l)\ _ / n + ( n + l ) 
'(1 + 4 ) / \ ( n + l ) + j ( l + 4) + l n 

(5.3) 
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