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1. INTRODUCTION

Let P be a quadratic polynomial with integer coefficients. Motivated by a series of results
on polygonal numbers (which we describe below) we consider the existence of integers a,b,c,d
and n such that

P(n) = P(a) + P(b) = P(¢) ~ P(d), P(a)P(t)P(c)P(d) # . &

The simplest example of a polynomial P for which (1) has infinitely many solutions is P(z) =
z?, for (3m)? + (4m)? = (5m)? = (13m)? — (12m)? for every m. Now z? = Py(z) where,
for each integer N with N > 3, Py(n) is the polygonal number (N — 2)n?/2 — (N — 4)n/2.
In 1968 Sierpinski [5] showed that there are infinitely many solutions to (1) when P = Ps,
and this was subsequently extended to include the cases Ps, Ps and P; (see [2], [4] and [3],
respectively). In 1981 S. Ando [1] showed that there are infinitely many solutions to (1) when
P(z) = Az? + Bz, where A and B are integers with A — B even, and this implies that, for
cach N, (1) has infinitely many solutions when P = Py.

It is easy to find polynomials P for which (1) has no solutions (for example, if P(n) is
odd for every n), and this leads to the problem of characterizing those P for which (1) has
infinitely many solutions. This problem has nothing to do with polygonal numbers, and here
we prove the following result.

Theorem 1: Suppose that P(z) = Az?+ Bz +C, where A, B and C are integers, and A # 0.
(1) If 8A? divides P(k) for some integer k, then there are infinitely many n such that (1)
holds for some integers a, b, ¢ and d.
(i) If gcd(A, B) does not divide C then there are no integer solutions to (1).

Theorem 1(i) is applicable when P(0) = 0, and this special case implies Ando’s result. As
illustrations of Theorem 1 we note that (1) has infinitely many solutions when P(z) = z%+2z+5
(because P(1) = 8), but no solutions when P(z) = 6z22+3z-+5. Not every quadratic polynomial
is covered by Theorem 1; for example, 22 + 2z + 4 is not (to check that 8 does not divide
P(k) for any k it suffices to consider k = 0,1,...,7). In fact, if P(z) = z2? + 2z + 4, then
P(u+1) — P(u) = 2u + 3, and it follows from this that for all k,

P(2k*)+ P(2k — 1) = P(2k? + 1)
= P(2k* + 4k + 3) — P(2k* 4 4k? + 2).
The existence of solutions of (1) may have something to do with Diophantine equations; for
example, if P(z) = z* — 4z + 3, then P(z + 2) = P(y + 1) + P(y + 3) is equivalent to Pell’s

equation £? — 2y* = 1. This link with Diophantine equations suggests perhaps that there may
be no simple criterion for (1) to have infinitely many solutions.
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2. THE PROOF

The proof of (i) is based on the following observation.

Lemma 2: Let p be any polynomial with integer coefficients. Suppose that there are non-
constant polynomials t, u, v and w with integer coefficients such that u(w(z)) = v(t(z)) + 1
and P(v(x) +1) — P(v(z)) = P(u(x)). Then there ezist infinitely many n such that (1) holds
for some integers a, b, ¢ and d.

Proof: It is easy to see that if, for any integer z, we put n = u(w(z)), a = v(t(z)), b=

u(t(z)), ¢ =v(w(z)) + 1 and d = v(w(z)) then (1) holds.
The Proof of (i): First, we show that the conclusion of (i) holds if 842 divides P(0)(= C).
Let u(z) = 1+ 4Az and v(z) = 8A%z2 + (4A + 2B)z + C/2A. Then u and v have integer
coefficients and as is easily checked, P(v(z)+1) — P(v(z)) = P(u(z)). Next define ¢(z) = 4Az
and w(z) = v(4Az)/4A. The assumption that 8A2 divides C' implies that w has integer
coefficients, and by construction, u(w(z)) = 1+ 4Aw(z) = v(¢t(z)) + 1. The conclusion of (i)
now follows from Lemma 2.

Now suppose that 842 divides P(k), and let Q(z) = P(z + k). Then @ has leading
coefficient A, and 842 divides @Q(0); thus there are infinitely many n such that (1), with P
replaced by @, holds for some a, b, ¢ and d. The conclusion of (i) follows immediately from
this.

The Proof of (ii): If there are integers n, a and b such that P(n) = P(b) — P(a), then there are
integers u and v such that Au + Bv = C, and this implies that gcd(A, B) divides C, contrary
to our assumption.
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