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1. I N T R O D U C T I O N 

In [2], Pomerance, Selfridge and Wagstaff offered $30 for a number n which is simulta-
neously a strong base 2-pseudoprime and a Lucas pseudoprime (with a discriminant specified 
in [2]). Since there is no known composite number that meets this criteria, even if the first 
condition is weakened to requiring only that n be a base 2-pseudoprime, it was suggested that 
this might be a reasonable test for "primality" which, though fallible, might be more reliable 
than current tests. Indeed since their article was published, both Mathematica and Maple 
have switched to some variation on this method. 

In [3], an unpublished manuscript by Carl Pomerance (available on Jon Grantham's web 
site, www.pseudoprime.com/pseudo.html), Baillie is credited with first proposing such a combi-
nation test. In [2], Pomerance, Selfridge and Wagstaff show that there are no counterexamples 
less then 20 • 109. Subsequently, a composite number which is both a base 2-pseudoprime and 
a Lucas pseudoprime has been referred to as a Baillie-PSW pseudoprime. 

Pomerance [3] gave a heuristic argument to show that there should be infinitely many 
such numbers. In fact, his argument suggest that for any e > 0, the number of Baillie-PSW 
pseudoprimes < x should exceed x1"6 for x sufficiently large depending on the choice of e. 

With time, the prize for such a number, n has grown to $620, and the conditions have 
been relaxed to the following [4]: 

1) 2n = (mod n), 
2) Fn+t = (mod n) 
3) n = 2 or 3(mod 5), 
4) n is composite (with explicit factorization provided). 

In this paper, we present calculations related to the construction of Baillie-PSW pseudo-
primes. We use a variation of the method Pomerance described. It should be pointed out that 
we have no example of such a number, although we are certain we could construct one if only 
we could search through a rather large space in which such an example will live. 

2. P R E L I M I N A R I E S 

The following are elementary facts related to base 2-pseudoprimes and Fibonacci pseudo-
primes. These facts can be found in many books on factoring, cryptography or primality. For 
example, see [1 Sec. 10.14], [5, Chap. 2 Sec IV], or [6, pp. 107-115]. 
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For each odd number n > 1, there is an integer h > 0 such that 

1) 2/l = l(mod?i), 
2) i f 2 m = l ( m o d n ) then % * . 

This number h is called the order of 2 modulo n and is denoted ordn(2). Since 2^ n ) = 1 (mod 
n), it follows that h\</>(n). Similarly, for each odd number n > 1 there is a positive integer k 
such that 

1) Fk = 0(mod n), 
2) if Fm = 0(mod n) then fc|m. 

We are unaware of a standard notation for this index k. We refer to it as the Fibonacci 
order of n and denote it by ord/ (n). 

A composite number, n, is called a base 2-pseudoprime if 2n~1 = l(mod n). This happens 
if and only if ordn(2) is a divisor of n — 1. For primes p3 ^p~(5) = 0(mod p). If for an odd 

composite number n5 Fn_ss\ = 0(mod n), we call n a Fibonacci pseudoprime. This happens 

if and only if ord/(n) is a divisor of n — (^ ) . 
The following are obvious sufficient conditions for n to be a base 2-pseudoprime or a 

Fibonacci pseudoprime: Suppose that n is an odd? square free composite number. 

If for each prime p|n3 ordp(2)divides n — 1 
then n is a base 2-pseudoprime. (2.1) 

If for each prime p\n, ord/(j?)divides n — 

then n is a Fibonacci pseudoprime. (2.2) 

As we mentioned in the introduction, Pomerance, Selfridge and WagstafF offer $620 for 
an example of a number n = 2 or 3 (mod 5) such that n is both a base 2-pseudoprime and a 
Fibonacci pseudoprime. In this case, n — ( | ) = n + 1. 

Here is a variation on Pomerance5s method for searching for such a number: Let M and 
N be two highly composite numbers with GCD(M3 N) = 2. Let P be the set of all primes p 
with the following properties: 

1) p does not divide MN, 
2) ordF(2) divides M, 
3) ord/(p) divides N. 

5 
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Define a function / on the subsets of P as follows: 

If a subset, -A, of P with cardinality at least 2 can be found such that 

/ ( ^ ) = 2 o r 3 ( m o d 5 ) ? 

f(A) = l(mod M) , and f(A) = - l ( m o d JV), 

then as an easy consequence of (2.1) and (2.2), f(A) will be a Baillie-PSW pseudoprime. If P 
is a large set compared with MN, then we expect lots of subsets A to exist. That is, assuming 
that the congruence classes of f(A) are roughly uniformly distributed modulo M and JV, one 
might expect 

2lpl 
(2.3) <j){MN) 

subsets A to have the desired properties. 
In addition to Pomerance's manuscript, Grantham's site also contains a list of 2030 primes, 

constructed by Grantham and Red Alford. Grantham comments that he and Alford "highly 
suspect" that some subset product of these primes is a Baillie-PSW pseudoprime. The site does 
not give reasons. However, an analysis of the primes shows that each has the property that p—1 
divides M and p + 1 divides JV, where M = 2(13)2(17)2(29)2(37)2(41)2(53)2(61)... (1249) and 
JV = 22(3)7(7)4(11)3(19)2(23)2(31)2(43)2(47)2(59)2(67)2(71)...(1187). Here, the only odd 
primes dividing M are congruent to 1 (mod 4) and the only odd primes dividing JV are those 
congruent to 3(mod 4). In each case, there are exactly 100 such primes. For this choice of M 
and JV, cf)(MN) ** 1.017659177 x 10545 < 21 8 1 1 . The problem, of course, is that a space of size 
22030 -g n a r c [ i0 search even if one expects 2219 examples. 

This current investigation began as a Master's project for the first author. The project 

was to look for much smaller numbers M and JV for which ^fMN\ > 1. It was thought that 

using ordp(2) and ord/(p) instead of p—1 a n d p + 1 would significantly reduce the size of M and 
JV. We performed our calculations using five Pentium III PC's and three Apple PowerMac's. 
We used C / C + + on the PC's, employing only single precision arithmetic (but with 84 bit 
integers.) On- the PowerMac's, we used Maple V™. 

3. R E S U L T S W I T H O U T U S I N G ORD p (2) O R ORD/(p) . 

Based on the primes of Grantham's site and their implied numbers M and JV, we searched 
for smaller M and JV as follows. We attempted to partition the small primes between M and 
JV a bit more evenly. We began with intial values 

Mstar t=.2(7)4(13)2(19)2(23)2(31)2(43)2(47)2(59)2(67)2
) 
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^start - (2)6(3)6(11)3(17)2(29)2(37)2(41)2(53)2. 

We put the powers of 2 and 3 in iVstart because it was thought that this would be advantageouos 
when we considered ordp(2), as discussed in the next section. We chose to favor ordp(2) over 
ord/(p) because it was quicker to calculate ordp(2) than ord/(p). For a given value of n, we 
then construct an 

-Wtaii = product of n ~ 9 primes, all congruent to 3(mod 4), 

Ntaii = product of n — 7 primes, all congruent to l(mod 4). 

We set M = MstaTtMtaii and N = 4iVstartiV"tail„ Thus, M and N are each divisible by exactly 
n odd primes. Next, we constructed the set 

ATmit = {a : a is a divisor of iVstart} 

of all divisors of iVstart. This set contains 47,628 elements. For each fe, let 

Nk = {x : x is a divisor of iVtaii and x has k prime divisors}. 

This set has (n^7) elements. If g(x, y) = 4xy - 1, with x E iVinit and y £ Nk (setting y = 1 if 
k = 0), then g(x,y) -f-1 is a divisor of N with exactly k prime divisors in common with JVtaii. 
We proceed as follows: As k increases from 0, for each x in iV^t and y in Nk, determine if 
g(x, y) — 1 is a divisor of M. If so, test if g(x, y) is prime. If it is, add g(x,y) to the list of 
pirmes in P&. At the end, we construct the set P = U^iV Technically, we should delete any 
primes p\MN from the list. In the following tables, we have not done this. However, this will 
not affect our results since the number of such primes is small compared to the size of F . 

Our first table gives the number of primes found for various values of n, k: 

k\n 
0 
1 
2 
3 
4 
5 
6 

total 
needed 

10 
7 
1 
0 
0 
0 
0 
0 
8 
192 

20 
9 
8 
1 
0 
0 
0 
0 
18 
332 

30 
19 
21 
10 
9 
0 
0 
0 
59 
490 

40 
19 
40 
37 
24 
5 
2 
0 
127 
660 

50 
24 
60 
72 
58 
26 
6 
0 
246 
838 

60 
27 
91 
119 
123 
66 
13 
3 
442 
1023 

70 
30 
123 
201 
203 
122 
47 
7 
733 
1214 

80 
32 
151 
295 
342 
236 
91 

1147 
1410 

90 
33 
194 
416 
565 
380 

1588 
1610 

100 
34 
224 
568 
850 
528 

2204 
1813 

Table 3.1 

Some comments on this table: the empty entries indicate computations we did not un-
dertake (there are about 37 million calculations needed for each element of iVstart f° r entry 
(90,5), for example. Our construction ensures that each Pk = Pk(n) satisfies Pkijri) Q Pkip) 
if ra < n. Thus, we know that we will find at least 91 primes for entry n = 90, k = 5. Hence, 
by n — 90, the number of primes in P grows past the expected number needed to cover all 
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reduced residue classes. It should also be pointed out that the counts are not complete for 
the larger numbers n: we sped up calculations by using only the smallest entries from iV"init. 
Based on numerical evidence, this missed some but not many primes. An interesting feature 
to the table is that although Alford's and Grantham's M and N seemed very contrived in that 
each was divisible by exactly 100 odd primes, it appears that they could not have decreased 
the number of primes by much. 

We analyzed our data as follows. A number is called z-smooth if all its prime divisors are 
less than z. Riesel [6, page 164] gives a crude estimate of u~uxu for the number of x-smooth 
numbers less than xu. He indicates that this estimate is often good enough to approximate 
the run time of computer algorithms which make use of smooth numbers. We are seeking 
primes such that p — 1 and p+1 are both z-smooth with respect to some z, and which also 
have factors from prescribed sets of primes. If one has a set of primes with asymptotic density 
1/2, then Riesel's argument leads to an estimate of (2u)~uxu numbers less than xu which are 
x-smooth and have all their prime divisors from that prescribed set. 

We use the following model: Given two disjoint sets of n primes; Pi,j?2,-•«,Pn> and 
qi, q2, • • •, qn with all the pJs and g?s of about the same size, we select j of the primes from the 
g-list, multiply them together to get an m. We ask that Am — 1 be prime and Am — 2 factor 
over the p's. In fact, what we really need is for 2m — 1 to factor over the p's. In this case, 
xu = 2qJ

n and x — pn = qn. This gives 

^ ln2 + j m g n In2 
u £* = 3 + = j + a, 

In qn In qn 

where a = ln(2)/ln(gn). Thus, the rough probability that Am — 2 is smooth with factors 
dividing M is (2j + 2a)~-?'~a. We also require that Am — 1 be prime, which happens with 
expected probability w j ^ - i v Thus, our estimate of the probability that a number of this 

form meet our requirements is , ,Vj, ? where u = j + j ^ - . The expected number of primes 

of this form is ^ ^ f 7 1 ) . 
ln(4gi) Vj/ 

Obviously, our primes differ dramatically in size. Moreover, our numbers need more than 
smoothness - there are limits on the divisibility of our numbers by small primes. However, this 
model is still useful for making predictions and understanding overall patterns. For example, 

using (-) - $ - jLf-j, we have 

2(2u)-" / n \ ^ 21-uu-unjej 

ln(4ql) \j) ~ ln(4«i)v^y 3j' 

If we ignore the difference between j and u, this expression is approximately 

2 / e n 
(3.1) 
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Thus, we expect no primes to be contributed by the cases where j > y/en/2. For example 
looking at Table 3.1, when n — 50, we expect no primes for k > 8. In fact, we got none for 
k = 6 or 7 either. If we trust (3.1) to give good estimates of the numbers of primes for various 
k in Table 3.1, then for k = 6, we should have found .37 = 0 primes. In fact, we do not trust 
(3.1) for more than a crude analysis. For example, it predicts 1.59 primes for n = 50, jfc = 5 
rather than the 6 we found, and it predicts 4.8 primes for k — 4 rather than our 26. 

Suppose we accept ^ uJj as a rough probability that a prime g(x^y) has the desired 

properties, where g(x,y) — 1 has j prime divisors. For each entry (n, k) in Table 3.1, we solved 
the equation 

# of primes found 2(2u)~u 

# of cases looked at ln(4g£) 

for j , where qn is the largest prime divisor of MN. We take this " j " to be some kind of average 
number of prime factors. The results are recorded in the table below. 

k\n 
0 
1 
2 
3 
4 
5 

10 
3.32 
4.24 
-
-
-
-

20 
3.21 
4.03 
5.16 
-
-
-

30 
2.96 
3.90 
4.'82 
5.40 
-
-

40 
2.95 
3.81 
4.65 
5.44 
6.42 
7.13 

50 
2.87 
3.76 
4.60 
5.41 
6.26 
7.20 

60 
2.82 
3.69 
4.57 
5.37 
6.24 
7.28 

70 
2.78 
3.64 
4.52 
5.37 
6.26 
7.17 

80 
2.76 
3.62 
4.49 
5.35 
6.24 

90 
2.75 
3.58 
4.46 
5.32 
6.25 

100 
2.73 
3.57 
4.44 
5.30 
6.29 

Table 3.2 

We did not compute values for k = 6,n = 60, 70 because we only did partial searches 
with k = 6. We ignored n = 80, k = 5 for the same reason. Based on the table, we expect the 
(5,90) entry to be roughly 7.2. We may use this to estimate the number of primes found for 
k = 5,n — 90. The result is that we expect some 171 primes in this case. Similarly, we expect 
maybe 46 primes when k — 6 (using j = 8.2) so that k from 0 to 6, we expect a total of 1805 
primes when n — 90. 

This table may be used to interpolate back to the point where the number of primes 
exactly matches the minimum number needed to cover all reduced residue classes. This point 
will be between n = 80 and n = 90. If we are cautious and use only k = 0 , . . . , 6 and j-values: 
2.76, 3.62, 4.49, 5.34, 6.25, 7.20, 8.20, then the matching point occurs at n = 88. Using the 
most optimistic numbers for j reduces this to n = 85. 

4. T H E E F F E C T O F U S I N G ORB p (2) O i l ORD/(p) 

How much does it help to ask only that ordp(2) divide M rather than that p — 1 divide 
M? Here is one model. Let Mf = 24(33)(112)(17)(29)M and search for primes as in Section 
3, but for which p — 1 divides Mf. Include p in P if 2M = 1 (mod p). The only additional 
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primes picked up this way are primes in which p—1 does not divide M, but p — 1 divides M1 

and ordp(2) divides M. We expect that p — 1 will have exactly one factor of 11 in ~y cases, 
and that this factor will not divide ordp(2) in -y of those cases. Similarly, exactly two factors 
of 11 should occur in j ^ cases, with both factors dropping out -^ of the time. Thus, the 
l l ' s should increase the count by a factor of (l + yp- -f jp-)- Arguing likewise for the other 
divisors M' jM gives a multiplier of 

1 1 1 1 
+ 8 + 32 + 128 + 512 

2 2 2 
27 243 2187 

10 10 
+ 1331 + l i s 

16 
1+T7* 

28 
1 + 293 I * L 2 7 8 -

As can be seen, it is the smaller primes that contribute most to this number. This is why we 
chose to make N divisibile by both powers of 2 and powers of 3. In Table 4.1, we give the 
actual numbers of primes found for various n, k for which p — 1 divides M7, ordp(2) divides 
M, and p+1 divides N. 

k\n 
0 
1 
2 
3 
4 
5 
6 

total 
ratio 
needed 

10 
9 
2 
0 
0 
0 
0 
0 
11 
1.38 
192 

20 
11 
10 
1 
0 
0 
0 
0 
22 
1.22 
332 

30 
23 
28 
19 
9 
0 
0 
0 
79 
1.34 
490 

40 
24 
55 
57 
30 
9 
2 
0 
177 
1.39 
660 

50 
30 
77 
103 
71 
35 
8 
0 
324 
1.32 
838 

60 
33 
112 
173 
171 
91 
20 
4 
604 
1.37 
1023 

70 
35 
151 
285 
274 
190 
70 
10 
1015 
1.38 
1214 

80 
39 
183 
415 
472 
359 
134 

1602 
1.39 
1410 

90 
40 
233 
580 
762 
564 

2179 
1.37 
1610 

100 
42 
268 
780 
1144 
736 

2970 
1.35 
1813 

Table 4.1 

In the table, the actual multiplier (the ratio row) appears to be somewhat higher, closer 
to 1.37 with the data looked at so far. We do not have an explanation for this discrepancy. 

Given the data above, it is natural to ask how low n can be and still have a sufficiently 
large number of primes to expect to cover the reduced residue classes of MN, According to 
the table, this happens by n = 80. We estimated the number of primes with n = 75 as follows: 
using the formula 

# of primes found 2(2u)~~u 

# of cases looked at In (4^) 
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and solve for j with the data from n — 70 and n = 80 in table 4.1 (admittedly a questionable 
thing to do) we interpolated to get estimated values of j for n = 75. Here are our results: 

n\k 
70 
75 
80 

0 
2.734 
2.715 
2.695 

1 
3.580 
3.572 
3.563 

2 
4.417 
4.404 
4.391 

3 
5.291 
5.277 
5.262 

4 
6.140 
6.134 
6.128 

5 
7.066 
7.066 

6 

8.016 

7 

8.966 

Table 4.2 

The row for n = 75 was obtained by averaging the results from 70 and 80, but rounding 
up to three decimal places. However, the prime list for n = 80, k — 5 was incomplete, so we 
used the value from n = 70, k — 5 for this entry. We estimated the entries for k = 6 and k = 7 
by adding .95 to the previous entries. Based on this table, when n = 75, we should expect to 
find the following numbers of primes: 

0 
37 

1 
165 

2 
344 

3 
360 

4 
263 

5 
103 

6 
28 

7 
6 

total 
1306 

needed 
1311 

Table 4.3 

Since we were conservative in our estimates for k = 5,6,7, we decided to actually carry 
out the computer search for primes. We were lucky to exceed expectations. Here is our actual 
count of primes found for n — 75. 

0 
35 

1 
165 

2 
349 

3 
356 

4 
279 

5 
116 

6 
25 

7 
1 

total 
1326 

needed 
1311 

Table 4.4 

Of the total, six primes are divisors of MN, leaving a set P with 1320 elements. Thus, 
we expect a Baillie-PSW pseudoprime to exist at this level. Since we did not complete counts 
for k = 6, 7, it is remotely possible that there are enough primes at n = 74 as well. 

Introducing the Fibonacci order with our M and N might be expected to have the fol-
lowing effect: Supposing we use an Nl = JV(7)3(13)2(19)(23). We would then expect 

(-4)(-^^)(-§+#)(^)('+§)--
times as many primes. In particular, for n = 70, (1022)(1.027) = 1050, still far short of the 
1214 needed in this case. In actual calculations, we again appear to beat this estimate, picking 
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up at least 40 additional primes for k between 0 and 3. However, we estimate fewer than 40 
primes remain to be found, leaving us more than 100 short of our goal. 

5. T H E Q U E S T F O R n = 70 

Given that we could find enough primes in our set P with n = 75, which corresponds to 
75 odd primes dividing each of M and N, we attempted to push the computational limits of 
our computers to try to reduce this to n = 70. There are several ways to change the way M 
and N are constructed to try to increase the size of P. We have put powers of 2 and 3 in N so 
as to favor the existence of primes with ordp(2) dividing M over ord/(p) dividing N. Suppose 
we are a bit more equitable, and start with, say, 

M s t a r t = 2(3)6(11)3(17)2(23)2(31)2(41)2(47)2(59)2, 

iVstajt = (2)6(7)4(13)2(19)2(29)2(37)2(43)2(53)2(61)2. 

One might expect this change to produce slightly more primes with p - l\M,p+ 1|JV, 
decrease the number of primes added using ordp(2), but increase the number of primes added 
using ordf(p). In fact, for reasons we do not understand, this change slightly decreased the 
number of primes p with p—l\M,p+l\N. The increase in the number of primes added using 
ord/(p) did not offset this decrease. 

We only calculated these numbers for 0 < k < 4. It is possible that things would improve 
for higher values of k. We considered it very unlikely, however, that searching higher k would 
yield enough additional primes to make a real difference. This being the case, we went back to 
our original set up, but increased the multiplicity of the smaller prime divisors of M and N. 
This increased the size of F , but also increased </>(MN), meaning that it increased the number 
of primes needed. We finally succeeded in obtaining enough primes with 

Ms t a x t = 2(7)5(13)3(19)3(23)2(31)2(43)2(47)2(59)2(67)2, 

Nstaxt = (2)12(3)8(11)3(17)3(29)2(37)2(41)2(53)2, 

and Mtaii and JVtaii as before. That is, Mtaii = (71) (79) . . . (787), a product 
congruent to 3(mod 4), and JVtaii = (61)(73).. . (829), a product of 68 primes 
1 (mod 4). In this case, we obtained the following table: 

k 
p-l/p+1 
ordp(2) 
ord/(p) 
total 

0 
30 
6 
0 
36 

1 
137 
37 
6 
180 

2 
232 
108 
17 
357 

3 
242 
88 
21 
351 

4 
137 
79 
9 
225 

5 
51 
27 
4 
82 

6 
7 
3 

10 

7 
1 

1 

total 
837 
348 
57 
1242 

Table 5.1 

The needed number of primes increased from the original 1214 to 1240. Thus, 2lpl is only 
about four times as big as <j>{MN). We only did partial searches with k = 4,5 for primes 
satisfying oid f(p)\N, and we suspect that there are more primes to find. Also, we were using 

of 66 primes all 
all congruent to 
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only single precision arithmetic in our search on PC's (using 64-bit numbers, however) and at 
k = 6,7 we were hampered by integer overflow problems, so we expect a few more primes here 
as well. Thus, we are confident that there is a Baillie-PSW pseudoprime to be found using 
this M and N. 

It would be hard to push these calculations down to n = 69. The largest primes dividing 
M and N are T87 and 829 respectively. There are a total of 60 primes in our list requiring one 
or the other of these. Thus, our list would drop to 1182 primes if these were deleted. Since 
log2 (j)(MN) would only drop to 1221, there would be a large gap to make up. We appeared 
to be getting diminishing returns from increasing the multiplicity of the smaller primes, so it 
is doubtful that this gap could be bridged. 

6* C O N C L U S I O N S 

To date, the $620 appears to be safe. Unless an efficient scheme to search a space of size 
2i5oo -1S founc|j o r a n approach other than that suggested by Pomerance can be found, the 
problem of constructing a counterexample appears to be intractable. It should be mentioned 
that Pomerance has indicated a willingness to pay his share even for an existence proof [4]. 
There might be more hope here. For example, suppose we have an M, N, P . Let A be a subset 
of P , and let U be the set of all subset products of elements of 4̂ modulo MN. Given a prime 
p G P — A, we might ask how big a set of subset products for AU {p} is. Giving pU the obvious 
meaning, this set will clearly be UUpU and since \U\ = |P17|, \UUpU\ = 2\U\ - \Uf\pU\. If 
x G U n pU, then for some sets of primes, x = p\p2 • - -Pk = P(?i<Z2 • • • qj, with the p's and g's 
from A. This can only happen if p = pip2 . . -Pkq^q^1 • • -qj1- Thus, if we can choose p so as 
to avoid the set 

{piP2 • • -Puq^q^1 • • • g~1(mod MN) : pJs and g5s are in ^4}, 

then \U UpU\ = 2\U\. Obviously, we cannot pick p to meet this condition forever. If \U\ > 
\(j)(MN), there will be a representation p = pip2 .. . p ^ r 1 ^ " 1 • • • Qj"1- ^ t n e number of such 
representations of p is small, the intersection of U and pU will also be small. Thus, one might 
have a chance of proving that all reduced residue classes are covered at some stage. 

If for some M and iV, \P\ is much larger than log2(f)(MN)^ perhaps there is a way to 
exploit this size difference as well. For example, the authors would be interested in a proof or 
counterexample to the following claim: 
Claim: Let m and n be relatively prime integers. Let 4̂ and B be disjoint sets of primes, with 
no prime dividing rnn. Suppose that for each reduced residue class x of m and y of n there 
are nonempty subsets 5, T of A and U, V of B such that 

f(S) = x(mod m) and f(U) = a;(mod m)1 

f(T) = y(mod n) and f(V) = y(mod n). 

Then for each reduced residue class z of mn, there is a subset W of A U B such that f(W) = 
z(mod mn). 

The authors have not experimented with the claim enough to actually submit it as a 
conjecture. However, if such a claim were true, then it might be possible to use the prime 
factorization of MN to show that P covers all reduced residue classes of MN. This approach 
is wasteful of primes in P so the authors are currently calculating primes for the case n= 100, 
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with the same Mstart and i\Tstaxt that were used for n = 70. This should give a very large set P 
compared to log2(/)(MN). As of this writing, the set P has 4838 primes, with log2<f)(MN) = 
1838. We estimate that | F | may get as large as 5500. Various sets of primes we have found 
are available on the second author's web site, www.d.umn.edu/^jgreene. 
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