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Please submit all new problem proposals and corresponding solutions to the Problems Edi-
tor, DR. RUSS EULER, Department of Mathematics and Statistics, Northwest Missouri State
University, 800 University Drive, Maryville, MO 64468. All solutions to others’ proposals
must be submitted to the Solutions Editor, DR. JAWAD SADEK, Department of Mathemat-
ics and Statistics, Northwest Missouri State University, 800 University Drive, Maryville, MO
64468.

If you wish to have receipt of your submission acknowledged, please include a self-
addressed, stamped envelope.

Each problem and solution should be typed on separate sheets. Solutions to problems in
this issue must be received by February 15, 2004. If o problem is not original, the proposer
should inform the Problem Editor of the history of the problem. A problem should not be
submitted elsewhere while it is under consideration for publication in this Journal. Solvers are
asked to include references rather than quoting “well-known results”.

BASIC FORMULAS
The Fibonacci numbers F;, and the Lucas numbers L, satisfy
Foy2 = Fop1+ Fny, Fo =0, F1 =1;
Lpjo=Lpy1+ Ly, Ly=2, Ly = 1.
Also, o = (14+V5)/2, B=(1-+5)/2, F, = (a" — f)/V5, and L, = o™ + ™.
PROBLEMS PROPOSED IN THIS ISSUE

B-961 Proposed by Steve Edwards, Southern Polytechnic State University,
Marietta, GA

Show that {;’;—i‘r + % is a constant for all nonnegative integers n.

B-962 Proposed by Steve Edwards, Southern Polytechnic State University,
Marietta, GA

Find

o1 Fop Fopa + Fap—1 Fopia
ioy ForFakvz + ForpFaggn

B-963 Proposed by Ovidiu Furdui, Western Michigan University, Kalamazoo,
MI
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Prove that

Fopnq1—1 > 1
F2n+4_3Fn+2_Ln+2+3 -n

for all n > 1.
B-964 Proposed by Stanley Rabinowitz, MathPro, Westford, MA
Find a recurrence relation for r, = %ﬂ

B-965 Proposed by José Luis Diaz-Barrero and Juan José Egozcue, Universitat
Politécnica de Catalunya, Barcelona, Spain

Let n be a positive integer. Prove that

Fol(4F41)!
F ) (Fo1 + Fry1)(2Fp11)!

is an integer.

SOLUTIONS

When Do they Converge?

B-946 Proposed by Mario Catalani, University of Torino, Torino, Italy
(Vol. 40, no. 5, November 2002)
Find the smallest positive integer k such that the following series converge and find the
value of the sums:

L. Z : ki 2'2 Zk:
=1

Solution by Toufik Mansour, Chalmers University of Technology, Sweden.
1. Using Lemma 3.2 in [1], we get

T
S P L= ——
Glo) :A:Jo o z2 -3z +1
It follows that
d d z(z* + 323 — 622 + 3z + 1)
§ : 2 N . — —
W Fnlac” = e <za$G(a:)) (z?2 — 3z + 1)3

n>0
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Hence, the sum 3" o n?F,L,z" converge if and only if |z| < 1(3 — /5), which means k >
3(3+ v/5). Therefore, the smallest positive integer k such that (1) converges is k = 3. In this

case the sum (1) equals 354.
2. Using Corollary 3.5 in [1], we get

2,.n __ $(1—£L‘)
H(?)ZTZ:OF":” T (14+2)(1 -3z +72)’

It follows that
(1-2z—22%+ z* + 4%z

2,0 . —
D nFe" = a5 H(a) (1+2)%(1 — 3z + 22)2

n>0

Hence, the sum ), oo nF2z™ converges when |z| < (3 — v/5), which means k > (3 + v/5).
Thererore, the smallest positive integer k such that (2) converges is k = 3. In this case, the
sum (2) equals 8. O

P.S. It is easy to prove by induction that the sums 3,5, i™F; Lz’ and ), i™FZz" converge

for all = such that |z| < 1(3 — v/5) (maximum domain), for all m > 1.

REFERENCES
(1] P. Haukkanen. “A Note on Horadam’s Sequence.” The Fibonacci Quarterly 40.4 (20002):
358-361. :

Also solved by Paul Bruckman, Charles Cook, Kenneth Davenport, L.G. Dresel,
Ovidiu Furdiu, Walther Janous, Harris Kwang, David Manes, James Sellers, and

the proposer.

Integral and Nonsquare!

B-947 Proposed by Stanley Rabinowitz, MathPro Press, Westford, MA
(Vol. 40, no. 5, November 2002)
(a) Find a nonsquare polynomial f(z, y, z) with integer coefficients such that f(Fn, Fnt1, Fni2)
is a perfect square for all n.
(b) Find a nonsquare polynomial g(z,y) with integer coefficients such that g(Fp, Fn+1) is a
perfect square for all n.
Solution by Paul Bruckman, Berkeley, CA and Walther Janous, Ursulinengymna-
sium, Innsbruck, Austria (separately).
We begin with the well-known “Wronskian” identity:

F'n.+1Fn—1 - (Fn)2 = (_1)n (1)
Two alternative forms of this identity are the following;:
(Fpt1)? = Fog1 By — (Fp)2 = (—-1)" (2)
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(Fn+1)2 — Fpyo Py = (—1)" (3)
This suggests the following solution for Part (a):
flay,2) =" -2y — 2y - 2®) =y* — o’ — 2% — w2 + 2%yz 4+ 5% (4)

We see from (2) and (3) that with this f, we have: f(Fn, Fnt1, Fut2) = 1, which is certainly
a perfect square for all n.
Also, using (2), we may take the following solution for Part (b):

9@ y) = (P —oy -2 + 1) —ay —2” - 1) =y* ~ 209’ —2®P + 2%y + 2t~ 1 (5)
It is easily checked that g(Fy, Fr4+1) = 0 for all n, which is again a perfect square.
Also solved by Peter Anderson, Michel Ballieu, L.G. Dresel, Ovidiu Furdui (part
(a)), David Manes, and the proposer.

A Series Inequality

B-948 Proposed by José Luis Diaz-Barrero and Juan José Egozcue, Universitat
Politécnica de Catalunya, Barcelona, Spain
(Vol. 40, no. 5, November 2002)
Let £ be a positive integer greater than or equal to 2. Show that, for z > 0,

n
2
Y[
logFg+1Fg+2...Fl+n T S § t]OgFt_'_k .
k=1

Remark. The condition on z should be £ > 1. For example, the inequality fails when
n = £ = 2 (try, for instance, z = 1/6). The proof below shows why we need z > 1.

Solution by Harris Kwong, SUNY College at Fredonia, Fredonia, NY.
It follows from Cauchy-Schwarz inequality that

2
n 1 T n 1
2 _ In F, P — < InF .
= (vt ) s (k) (£ i)

For £ > 1, we have Inz > 0. Hence

2 n
n“lnzx SZ Inz T
InFpy1Foa.. . Fron = £ InFopy

which completes the proof, because Inz/Ina = log, = for any a > 0.
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Also solved by Paul Bruckman, Mario Catalani, L.G. Dresel, Ovidiu Furdui,
Walther Janous, H.-J. Seiffert, and the proposer.

Couples Congruence

B-949 Proposed by N. Gauthier, Royal Military College of Canada
(Vol. 40, no. 5, November 2002)
For I and n positive integers, find closed form expressions for the following sums,

n n
S1=) 3" F yand Sy = 3" FL3 5,y
k=1 k=1

Solution by Mario Catalini, University of Torino, Torino, Italy
We will use the following identities:

5F3 = F3,, — 3(—1)"Fy, (1)
L3 = Lsn + 3(—1)" L. 2)

Z 3 E gy = 3" gy + 3" F g + 3" Fh g + - 4 3Fgus gy + Fin gy
k=1

Using identity (1) and the fact that the subscript is always an even number we get

581 = 3" [Fs2.9; — 3F3.1] + 3" [ Fs.9; — 3F32.91] + 3" 3[F34.9; — 3F35.]
+ -+ 3[Fsn.9p — 3F3n-1.9]] + [F3n+1.9; — 3F3n.5).

Because of a telescopic effect we obtain simply
581 = —3"F3.9; + Fyn41.9;.

For the second summation we have

n
D 3" F L3 gy = 3" LS gy + 8" 2L (q141) + 3" 3L ppn) + - -
k=1

+3L3n-1.a141) + Lin.2141)-
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Using identity 2 and the fact that the subscript is always an odd number we get
S2 =3""" [La2.(a141) — 3Ls.a1)] + 3" 7% [Lss.ca141) — 3Lg2.2141)]
+ 3773 [Las.c141) — 3Las.a11)] + - -
+ 3 [Lan.(21+1) — 3Lan-1.(2141)] + [Lgn+1.21+1) — 3Lan.(2141)] -
Because of a telescopic effect we obtain

So = —3" L3.2141) + Lan+1.(2141)-

Also solved by Paul Bruckman, H.-J. Seiffert, and the proposer.

Primes --- Again

B-950 Proposed by Paul S. Bruckman, Berkeley, CA
(Vol. 40, no. 5, November 2002)
For all primes p > 2, prove that

Py
k
1

-]
I

=0 (mod p),

o
Il

where § represents the residue k~*(mod p).

H.J. Sciffert refers the reader to part (b) of problem H-545 in The Fibonacci Quarterly
38.2 (2000): 187-188 and Kenneth B. Davenport quotes Corollary 4 of “Equivalent Conditions
for Fibonacci and Lucas Pseudoprimes which Contain a Square Factor,” Pi Mu Epsilon Journal
10.8 Spring 1988, 634-642.

Also solved by L.G. Dresel and the proposer.
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