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1, I N T R O D U C T I O N 

Let n be a positive integer n and let uj(n), 0 (n) 3 r (n) ? <f>(n) and a(n) be the classical 
arithmetic functions of n. That is, cj(n), fi(n), and r(n) count the number of distinct prime 
divisors of n, the total number of prime divisors of n, and the number of divisors of n, respec-
tively, while 4>(n) and a(n) are the Euler function of n and the sum of divisors function of n 
respectively. 

A lot of interest has been expressed in investigating the asymptotic densities of the sets 
of n for which one of the "small'5 arithmetic functions of n divides some other arithmetic 
function of n. For example, in [2], it was shown that the set of n for which uj(n) divides n is 
of asymptotic density zero. This result was generalized in [4]. The formalism from [4] implies, 
in particular, that the set of n for which either Q(n) or r(n) divide n is also of asymptotic 
density zero. On the other hand, in [1] it is shown that r(n) divides a(n) for almost all n and, 
in fact, it can be shown that all three numbers u)(n), ft(n) and r(n) divide both 0(n) and 
o~(n) for almost all n. 

In this note, we look at the set of positive integers n for which one of the small arithmetic 
functions of n divides Fn or Ln. Here, Fn and Ln are the TI*̂ 1 Fibonacci numbers and the JI^^1 

Lucas number, respectively. We have the following result: 

Theo rem: 
The set of n for which either one of the numbers w(n), Q(n) or r(n) divides I 7 ^ is of 

asymptotic density zero. 
Since F2n — FnLn for all n > 0, it follows that for most n, none of the numbers u(n), O(n) 

or r(n) divides either Fn or Ln. Following our method of proof, we can easily generalize 
the above Theorem to the case when the Fibonacci sequence is replaced by any Lucas or 
Lehmer sequence. We believe that the above Theorem should hold with the Fibonacci sequence 
replaced by any non-degenerate linearly recurrent sequence but we. have not worked out the 
details of this statement. 

2. P R E L I M I N A R Y R E S U L T S 

Throughout the proof, we denote by ci ,C2,. . . computable constants which are absolute. 
For a positive integer k and a large positive real number x we let log^ar) to be the composition 
of the natural logarithm with itself k times evaluated in x. Finally, assume that S(x) is any 
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function defined for large positive values of x which tends to infinity with x. We use p to 
denote a prime number. We begin by pointing out a "large" asymptotic set of positive integers 
n. 

L e m m a 1: 
Let x be a large real number and let A(x) be the set of all positive integers n satisfying the 

following conditions: 
1. y/x < n < x; 
2. K B ) - l o g 2 ( x ) | < 8{x){\og2{x)yl2 and \Q(n) - log2(z)| < <K*)(log2(z))1/2; 
3. Write n — Y\p\npctp- Then, maxp |n(ap) < log3(x) and if p > log3(jj), then ap = 1. 
Then A(x) contains all positive integers n < x except for o(x) of them. 

T h e Proof of L e m m a 1: 
1. Clearly, there are at most -%/x = o(x) positive integers which do not satisfy 1. 
2. By a result of Tiiran (see [6]) 

£ > ( n ) - log2(aO)2 = 0(a:log2(x)). (1) 
n<x 

Thus, the inequality 

M n ) - l o g 2 ( s ) | < ^ ) ( l o g 2 ( s ) ) 1 / a (2) 

holds for all n < x except for O ( ^ y ) = o(x) of them. This takes care of the first inequality 
asserted at 2. For the second inequality here, we use the fact 

J2(n(n)-u(n)) = 0(x). (3) 
n<x 

By (3), it follows that the inequality 

fi(n)-o;(n)<^(x)(log2(a;))1/2 (4) 

holds for all n < x except for 0(s,.,lox ^^1/2) = o{x) of them. Inequalities (2) and (4) now 
tell us that 

\Sl{n)-\og2{x)\<8(x){\og2{x))ll2 (5) 

holds for all n < x except for o(x) of them. 
3. Assume first that n is divisible by some prime power pa with a > log3(x). Then, the 

number of such n < x is certainly at most 

£ ^ ) < »(C0og3(*)) - 1) = O ( - ^ ) = o(x). (6) plog3(x) VSV 63 V ; / ) \ 2 l o S : 

Here, we used £ to denote the classical Riemann zeta function. 
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Finally, assume that n is divisible by a square of a prime p > log3(a:). Then, the number 
of such n < x is at most 

Thus, A(x) contains all positive integers n < x but for o(x) of them. 
In what follows, for a positive integer n we denote by z{n) the order of apparition ofn in 

the Fibonacci sequence; that is, z(n) is the smallest positive integer n for which n\Fz^ny In 
the next Lemma, we recall a few well-known facts about z(n). 

L e m m a 2: 
1. There exist two constants c\ and c2 such that 

c\ logn < z(n) < C2nlog2(n) for all n > 3. (8) 
2. z(2s) = 3 • 2s~2for all s > 3. 

T h e P roof of L e m m a 2: 
1. Let 71 = 1 ^ 5 be ^ n e golden section and let 72 = 1 ~2

 5 be its conjugate. Since 

F n - 7 l ~ 7 2 for all n > 0 (9) 
7i ~ 72 

it follows easily that 
Fn < ln, (10) 

holds for all n > 0. Hence, since n\Fz(n), we get, in particular, that 

n < ^ ( „ ) < 7 i ( n ) - (11) 

Taking logarithms in (11) we get 
c\ logn < z(n) (12) 

with c\ — T~r—. 
1 log 71 

For the upper bound for z(n), we recall that if 

n = Hpa" (13) 
p\n 

then, 
z(n) = ]cmpln(z{pa')). (14) 

Moreover, if p is a prime, then 
z(p)\p-6p, (15) 

where Sp = ( | ) is the Jacobi symbol of p in respect to 5, and if a > 2 is a positive integer, 
then 

*(pa) |pa _ 1*(p) . ( is) 
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Combining (14), (15) and (16), we get that 

z(n) < n ^ P ~ 1 ( ^ + X) ^ <n) < ^n\og2{n). (17) 
p\n 

2. This is well-known (see, for example, [5]). 
For a given positive integer j and a positive large real number x let 

Pj(x) = #{n<x\uj(n)=j} (18) 
and 

nj(x) = #{n<x\n(n)=j}. (19) 
We shall need the following result: 

L e m m a 3: 
There exist two absolute constants c$ and C4 such that if x > c$ and j is any positive 

integer, then 
m a x ( p , ( x ) , 7 r J ( x ) ) < ( i o g 2

C y ) ) 1 / 2 . (20) 

T h e Proof of L e m m a 3: This is well-known (see [3], page 303). 
We are now ready to prove the Theorem. 

3 . T H E P R O O F O F T H E T H E O R E M 

We assume that x is large and that n £ A(x), where A(x) is the set defined in Lemma 1 
for some function 6. 

Throughout the proof, we assume that S(x) is any function tending to infinity with x 
slower than (log2(x))1/2; that is 

lim n */iu/2 = °- (21) 
x-+oo ( l o g 2 ( x ) ) 1 / 2 

We first treat the easiest case, namely r (n ) |F 2 n . Since n E A(x), it follows that 

u(n)> - log2(x) (22) 
holds for x large enough. Now write 

Tii = n pap 

p\n, p<log3(x) 

and 

n2= JJ p. 
p\n, p>log3(x) 

Clearly, n = nin,2,ni and n2 and coprime and n2 is square-free, therefore 
1 1 

«(n 2 ) = w(n) - w(m) > - log2(ar) - 7r(log3(a;)) > - ]og2(ar), (23) 
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where the last inequality in (23) holds for x large enough. Now notice that 

r{n) = r (n i ) r (n 2 ) = 2w(na>r(m). (24) 

Thus, if r (n ) |F 2 n , we get, in particular, that 2 ^ n 2 ) | F 2 n , whence s(2w(n2))|2rc. By inequality 
(23) and Lemma 2, it follows that if we denote by 0:2 the exponent at which 2 divides n, then 

a2 > uj(n2) - 3 > - log2(ar) - 3. (25) 
o 

The expression appearing in the right hand side of inequality (25) is larger than log3(x) for 
large x, contradicting the fact that n E A(x). Thus, if x is large and n E A(x), then r(n) 
cannot divide F2n. 

We now treat the cases in which uj(n) or Q(n) divides F2n. As the reader will see, the key 
ingredients for these proofs are the fact that n satisfies both condition 2 of Lemma 1 as well 
as Lemma 3, and both these results are symmetric in u(n) and fi(n). Thus, we shall treat in 
detail only the case in which u(n) divides F2n. 

We fix a positive integer j such that 

\j - log2(x)| < 8{x){\og2{x))1'2 (26) 

and we find an upper bound for the set of n E A(x) for which u(n) = j and j\F2n- Since j\F2n, 
it follows that 

2n = z(j)m, (27) 

for some positive integer m. Assume first that n is odd. In this case, 

j + 1 = v(2n) = u(mz(j)) = u(m) + v{z(j)) - s, where s = ^(gcd(m, z(j))). (28) 

We now notice that by inequality (26) and Lemma 2, 

c5 log3(x) < z(j) < c6 log2(x) log4(x) (29) 

holds for all x large enough and uniformly in j . In particular, 

s < UJ(Z(J)) < c7 log(z(j)) < c8 log3(x) (30) 

holds for x large enough and uniformly in j . Assume that s is a fixed number in the set 
{0,l,...,oj(z(j))}. Then 

2n 2x , . 

is a number with the property that 

u(m) = j + l-u(z(j))+s (32) 
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is fixed. Moreover, it is easy to see that 

x 
1/2 2tX ZX ZX /nn\ 

c6log2(x)log4(x) z{j) c5log3(^) 

Now Lemma 3 together with inequality (33) implies that the number of numbers m < 4 | j 
for which u(m) is given by formula (32) for fixed j and s is at most 

<** (34) 

and this bound is uniform in j and s when x is large. We now let s vary and we get that the 
number of odd n 6 A(x) for which w(n) = j and j\F2n is bounded above by 

C9(x(u(z(j)) + 1) ci0x\og(z(j)) 
z(.7)(log2(z))V2 < zU)0og2(x)y/*- ( ) 

We now use inequality (29) to conclude that (35) is bounded above by 
cuff log4Qg) r„B\ 

log3(ff)(log2(ff))V2- ^ > 

A similar analysis can be done to count the number of even n £ A(x) for which u)(n) = j and 
j\F2„. Thus, the total number of n 6 A(x) for which w(n) = j and j'|F2n is bounded above by 

c12xlog4(a;) 
log3(a;)(log2(x))V2 ^ > 

for large x and uniformly in j . Since j = uj(n) satisfies (26), it follows that j can take at most 
25(x)(log2(x))1/2 + 1 values. Thus, the totality of n E A{x) for which oo(n)\F2n is certainly 
not more than 

Ci3xlog4(x)S(x) 
logs 0*0 

(38) 

It now suffices to observe that one can choose S(x) such that the function appearing at (38) 
is o(x). For example, one can choose S(x) = i^(% an (^ ^ n e n ^ n e ^as^ expression appearing in 

(38)is°(i^y) = °w-
This shows that the set of n for which uj(n)\F2n is of asymptotic density zero. As we 

mentioned before, a similar analysis can be done to treat the case in which Q,(n)\F2n. The 
Theorem is therefore proved. 

4. R E M A R K S 

One may ask what about the set of positive integers n for which one of the "large" 
arithmetic functions of n, i.e. <f>{n) or a(n) divides Fn or Ln. The answer is that the sets of 
these n have all asymptotic densities zero, and this follows easily from our Theorem combined 
with the fact that both <fi{n) and a(n) are divisible by all three numbers u/(n), ft(n) and r(n) 
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for almost all n. If instead of considering whether or not Fn is a multiple of some other function 
of n, one looks at i^(„) or i ^ ^ ) , then one can show that both i^(n) and i ^ n ) are divisible 
by all three numbers u{n), fi(ra), r (n) for almost all n. We do not give more details. 
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