
GENERATING FUNCTIONS, WEIGHTED AND 
NON-WEIGHTED SUMS FOR POWERS OF 

SECOND-ORDER RECURRENCE SEQUENCES 

Pantelimon Stfimka * 
Auburn University Montgomery, Department of Mathematics, Montgomery, AL 36124-4023 

e-mail: pstanica@mail.aum.edu 
(Submitted April 2001-Final Revision July 2002) 

1. I N T R O D U C T I O N 

DeMoivre (1718) used the generating function (found by employing the recurrence) for the 

Fibonacci sequence Y^Lo ^ix% — i-x-x2 > ^° °btain the identities Fn = a jj? , Ln = an + (5n 

{Lucas numbers) with a = 1+
2 ,/? = 1 -

2 • These identities are called Binet formulas, in 
honor of Binet who in fact rediscovered them more than one hundred years later, in 1843 
(see [6]). Reciprocally, using the Binet formulas, we can find the generating function easily 

E~0^ = ^ESoK-^V = ^(T^-T^) = i^^'si l lce^--1'a + ^ = L 

A natural question is whether we can find a closed form for the generating function 
for powers of Fibonacci numbers, or better yet, for powers of any second-order recurrence 
sequences. Carlitz [1] and Riordan [4] were unable to find the closed form for the generating 
functions F(r,x) of F£, but found a recurrence relation among them, namely 

^ A • 
(1 - Lrx + (-l)rx2)F(r, x) = l + rx J T ( - l ) i _ ^ F ( r - 2j, (-l)jx), 

j=i 3 

with Arj having a complicated structure (see also [2]). We are able to complete the study 
started by them by finding a closed form for the generating function for powers of any non-
degenerate second-order recurrence sequence. We would like to point out, that this "forgotten" 
technique we employ can be used to attack successfully other sums or series involving any 
second-order recurrence sequence. We also find closed forms for non-weighted partial sums for 
nondegenerate second-order recurrence sequences, generalizing a theorem of Horadam [3] and 
also weighted (by the binomial coefficients) partial sums for such sequences. Using these results 
we indicate how to obtain some congruences modulo powers of 5 for expressions involving 
Fibonacci and/or Lucas numbers. 

2. G E N E R A T I N G F U N C T I O N S 

We consider the general nondegenerate second-order recurrence, J7n+i = alln + 
bUn-i,a, 6, J7o, U± integers, 6 = a2 + 46 7̂  0. We intend to find the generating function of 
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powers of its terms, ?7(r, x) = Y^Lo ^lx%- ft *s known that the Binet formula for the sequence 

Un is Un = Aan-B/3n, where a = | ( a + V a 2 4-4&),£ = | ( a - V a 2 + 46) and A = u^f,B = 

Ula-Qa• We associate the sequence Vn — an + /?n, which satisfies the same recurrence, with 
the initial conditions VQ — 2, V\ = a. 
T h e o r e m 1: We have 

r - 1 
^ / r \ Ar~2k — W~2k 4- (—h\k(W-2knrr-2k — AT~2kRr~2k\r 

"fr-*)=E(-^*(0-— I - ( - V ! J - ^ • 
ifr is odd, and 

£ i W l - ( - 6 ) * F r _ 2 f c s + 6 ^ 2 

fr\ {-AB)r2 .£ . 
+ ( r J i / n i > Z / r w evm-

Proof: We evalute 

oo / r / \ 

i=0 \fc=0 ^ ' / 

r • \ oo 

= E(I)^(-s)r"fcE(a^r"fca:)i 

= £ \k)Ak{~B)r~\-a^^x-
k=0 

If r is odd, then associating k «-» r — fc, we get 

c/r, x) - V(-i)fcfr>| f A B AB ) 

' r \ J4r_fcBfc - ^ f c
JBr _ f c + (AkBT-kar-kl3k - AT~k Bk ak pT~k)x 

fc=0 V 7 1 - (aki3r~k + ar~k/3k)x + a r /9 r x 2 

D-D'© fc/r\ AT-kBk - AkBr~k + (-b)k(AkBr-kar-2k - Ar~kBk^-2k)x 

k=0 v-x. 1 - (-&)fcK-_2*x - ^ 2 
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If r is even, then associating k «-» r - jfe, except for the middle term, we get 

'r\ ( AkBr~k Ar~kBk \ (r\ A*(-B)* 2 / r \ / AkBr Ar B \ / r \ J 

U(r,x) = E(-Dfcy {, _akf}r-kx + ! _ a , - ^ J + (J I (—6) 2 x 

! fc /Y\ A^B7"-* + ^lr-&Bfc - (AkBr-kar-k0k + AT-kBkakpr~k)x E(-Dfc( 
fc=0 V 

fey 1 - (akpr-k + ar-k/3k)x + ar/3rx2 

+ . • , ( - ^ S ) f ©i 
£(-*) 

2/ * - ( - & ) » a; 

fc / r \ ylfcBT'-fc + Ar_fcBfc - (-6)fe(AfcBr-fcar_2fc + AT-kBkpT-2k)x 
M l-(-b)kVr-2kx + brx2 

, ' r^ ( -AB)i 
§ / ! - ( - & ) * * 

If J70 = 0, then 4̂ = JB = ^r« , and in this case we can derive the following beautiful 
identities. 
Theorem 2: We have 

r - l 

U(r,x) = A-1 ± Q ^ ( ^ I ^ - ^ - ifr iS °dd 

U(rx) A ^ ( l)k(r] 2 ~ ( - b ) f c ^ - ^ /r\ (-l)i^ 

Corollary 3: If {Un} n is a nondegenerate second-order recurrence sequence and Uo — 0, then 

no r\ - ^ i M l - M ,9* 
U(2'x)~ (bx + l)(Px*-V2x + l) [Z) 

£/(3 x) = M ' C M l - * * * ~ &3*2) 
^ ' ' ( l - ^ 3 x - 6 3 x 2 ) ( l + 6Fi a ; -63x2)" W 
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Proof: We use Theorem 2. The first two identities are straightforward. Now, 

= A2 U3 + 36t7i + 6(^3^1 ~ SUiV3)x - h3(U3 + 3M7i)s2 

X (l-Vsx-bZx^il + hVxx-tfx2) 

SA2Uxx{l - 2abx - b3x2) 
~ (1 - V3x - b3x2)(l + bVxx - b3x2)' 

since U3 + 36f7i = (a2 + 46)E7i - «7i and C/j,Vi - 3J7iF3 = -2ofl7i- D 
R e m a r k 4: If Un = Fn, the Fibonacci sequence, then a = 6 = 1, and i/ ?7n = P n , £fte Pe/J 
sequence, then a = 2,6 = 1. 

3. H O R A D A M ' S T H E O R E M 

Horadam [3] found some closed forms for partial sums Sn = Y^=i »̂> ^-w = ]C?=i ^-*» 
where P n is the generalized Pell sequence, P n +i = 2Pn + P n - i , Pi — P? -P2 = Q- Let p n be 
the ordinary Pell sequence, with p = l,q = 2, and gn be the sequence satisfying the same 
recurrence, with p = l ,g = 3. He proved 
T h e o r e m 5 ( H o r a d a m ) : For any n, 

$An = q2n(pq2n-l + M2n) + P ~ ̂  #4n-2 = g2n-l(P^2n-2 + M2n-l) 

S471+I = q2n(PQ2n + M2n+l) - 25 SW-l = q2niPQ[2n-2 + OT2n-l) ~ P 

S-4H = q2n(-pq2n+2 + ̂ 2n+l ) + 3p - q] S-4n-¥2 = q2n(-pq2n + M2u-l) + 2P 

Sr_4n+1 = q2n(pq2n+l ~ 0«2n) + P5 # -4n - l = 92n+l(pg2n+2 ~ OT2n+l) + 2P ~ 9-

We observe that Horadam's theorem is a particular case of the partial sum for a non-
degenerate second-order recurrence sequence Un. In fact, we generalize it even more by finding 
SnAx) = £?=o Uixi- F o r simplicity, we let U0 = 0. Thus, Un = A(an-@n) and Vn = an+/3n. 
We prove 
T h e o r e m 6: We have 

aU (r) Ar-lr^hk(r\ Ur-2k - (-*)»»l7(r-afc)(w+1)*» + ( - f t ^ n - D ^ ^ ^ + l 
bn'r{X) ~ W 1 - (-6)*K_2*ar - ft'*2 ' W 
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if r is odd, and 

2 - (-b)kVr-2kx - (-6)fc("+1V(r_2fc)(n+1)x"+1 + (-by+knV{r_2k)nxn+2 

l-(-b)kVr-2kx + brx2 

if r is even. 
Proof: We evaluate 

i=o fc=o W 

= ArJ2(-iy-k(r\J2(ak^~kxy 
k=0 x ' i=0 

Ar v r - i y * (T\ (^ r " f c ^) n + 1 - 1 

<kj akBr~kx — 1 
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Assume r is odd. Then, associating k <-» r — fc, we get 

r - l 

B , p W _ ^ ; W \ ar- f c i8 f cx-l a*p-*x-l J 

- A
r V f _ i ) t (r\ (<*kl3T~kx - l)(a(r-fc)("+1)/9fc("+1)x"+1 - 1) 

r - l 

Ar 

fc=0 X 7 

-(ar~k/3kX ~ l)(aHn+l)p(r-k)(n+l)xn+l _ ^ 

{akpT-kx - l)(ar-k/3kx ~-1) 

r \ / ar(n+l)-fcn^r+fcnxn+2 _ a(r-k)(n+l) ftk(n+1)^+1 

r - l 

A i>0 
fc=0 V 7 

„akpr-kx _ ar+fcn£r(n+l)-fcnxn+2 + ^ r - f e ^ ^ 

_|_afc(n+l)^(r-fc)(n-rl)a;n+l 

1 - (-6)fc(ar-2fc + fir-2k)x + a r ^ x 2 

fc / r \ ( - 6 ) f c ( a r - 2 f c - /3r~2k)x - ( - f t )*(n+l)( a ( r -2*)(n+l) 

_fl(r-2fc)(n+l)jxn+l _|_ (_^r+fcn/a(r-2fc)n _ g(r-2fc)nWn+2 

1 - (-6)*Fr-2*x - 6 ^ 2 

Assume r is even. Then, as before, associating k 4-> r — k, except for the middle term, we 
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get 

q U ( , _ A r ^ ( ^ f c fr\ 2 ~ ( - b ) f c ( a ^ f c + ^ 2 f c ) x - ( -6 )Mn+l ) ( a ( r -2 ib ) (n + l ) 

fc=0 

_j_/j(r-2fc)(n+l)Wn+l _j_ / jy\r+&n/a(r-2&)n _|_ g(r-2fe)n\xn+2 

l - ( - 6 ) * F r - 2 * * + &r*2 

2 - (-h) f cVr-2 f ca; - ( - f e ) f c ( r a + 1 ) V ( r - 2 f c ) ( n + l ) ^ + 1 + ( - & ) r + f c " V ( r - 2 f c ) n ^ + 2 

1 - (-b)*Vr-2kX + brX* 

Taking r = 1, we get the partial sum for any nondegenerate second-order recurrence 
sequence, with UQ = 0, 

Corol la ry 7: S^x) = ' ^ - ^ ^ " ^ 

R e m a r k 8: Horadarn's theorem follows easily, since Sn = S^i(l). Also S-n can be 
found without difficulty, by observing that F _ n = p p _ n _ 2 + qp-n-\ — — p(—l)n+2pn+2 — 
q(-l)n+1Pn+i, and using S*A(-1). 

4. W E I G H T E D C O M B I N A T O R I A L S U M S 

In [6] there are quite a few identities like YH=O (")** = ^ n , or X)?=0 (1)F^ w h i c h i s 

5 W L „ if n is even, and 5[V-li?nj if n is odd. A natural question is: for fixed r, what is 
the closed form for the weighted sum Y17=o (?)^T fif ** exists)? We are able to answer the 
previous question, not only for the Fibonacci sequence, but also for any second-order recurrence 
sequence Un: in a more general setting. Let SrjTl(x) = $^L 0 (?l)U[x%. 
T h e o r e m 9: We have 

£•,»(*) = E CC)Ak(-BY-k(l + akpr-kx)n. 
fc=o ^ ' 

Moreover, t/Z70 = 0, then• Sr,n(x) = ^ E L o M ^ G K 1 + af c£r _ f ca;)n. 
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Proof: Let 

Sr,n(x) = J2 (fj E (l)(Aai)k(-Bpiy-kxi 

7=Z W t=£ W 

=E(l)^(-r'|:(l)<«v r—km\i 

k=0 x ' 

kor—km\n B)r-k{l+ak$T-kx) 

If U0 = 0, then A = B, and Sr,n(x) = Ar Efc=o(" 1 ) r "*(*)( 1 + a*j8r"*ar)n. D 
Although we found an answer, it is not very exciting. However, by studying Theorem 9, 

we observe that we might be able to get nice sums involving the Fibonacci and Lucas sequences 
(or any such sequence, for that matter), if we are able to express 1 plus/minus a power of a,/3 
as the same multiple of a power of a, respectively /3. When Un = Fn, the Fibonacci sequence, 
the following lemma does exactly what we need. 
L e m m a 10: The following identities are true 

a2s - (-I)3 = VbasFs 

pis _ ( _ 1 ) s = _ ^ s F s 

a2s + ( - l ) s = Lsas 

018 + ( ~ l ) s = LS/3S. 

Proof: Straightforward using the Binet formula for Fs and Ls. • • 
T h e o r e m 11: We have 

fi'4r+2,n(l) = b ^ ^ ^ £ ( ^ ^ ^ r + X - f c ^ r + l - f c ) , if « *» odd 

S4r+2,n(l) = 5*~i2r+1) f ) ( - l ) * ( ^ ^ ^ F2"r+1_fcJLn(2r+1_fc), i/ n as et;en 

54r,n(l) = 5' -2r 

(6) 

(7) 

(8) 

(9) 
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Proof: We use Theorem 9. Associating k «-» 4r + 2 — h, except for the middle term in 
iSr4r+2,7z(l), we obtain 

S4r+2,n(l) = ^ ^ £ ( - ! ) * ( ^ ^ ^ [(l + «*/J4^2"*)" + (l + a4r+2-*/3*)n] 

= 5-(2r+1) £ ( - 1 ) * ( ^ + 2 ) [(1 + (-1)*S4 r + 2-2T + (1 + (-l)fca4r+2-2fc)nl 

= 5-(2r+l) yV_!)fc(n+l) T4f + 2>j |Y(-1)* + ^2(2r+l-^)\n
 + [(_]_)& + a2(2r+l-fc)V 

10) 

We did not insert the middle term, since it is equal to 

5-(2r+i) (_1 )2 r+i (*r + 2 \ ( 1 + a 2 r + 1 ^ 2 r + 1 ) n 

= 5 - ( 2 r + l ) ( _ 1 ) 2 r + l (^ + 2 \ ± + ( _ 1 ) 2 r + l ) n = Q 

In (10), using (6), and observing that a
2 ( 2 r + 1 - f c ) + ( -1)* = a2(2 r + 1- f e) - ( - l ) 2 r + 1 - f c , we get 

54r+2,n(l) = 5 - ( 2 r + 1 ) ^ ( - l ) ( " + 1 ) f c ^ + V ^ ^ , ( ( - I f ^ C ^ + l - * ) + a »PH- l -* ) ) . 

Therefore, if n is odd, then 

5 W „ ( 1 ) = 5 - ^ £ ( 4 r + 2 ) 5 ^ F 2 " r + 1 _ f c F n ( 2 r + 1 _ f c ) 

and, if n is even, then 

2r / \ 
S4r+2,„(1) = 5-(2 r + 1)E(- l ) f c ( 4 r + 2j5^2™+1_fcLn(2r+1_fe). 
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In the same way, associating k «-> AT — fc, except for the middle term, and using Lemma 10, 
we get 

2 r - l 
5^(1) = 5-2r £ (-1)* (4r) [(1 + ak^~k)n + (1 + a*-kf3k)n] + 5~2r2» ( f ) 

k=0 \ / \ V/ 

= 5"2r £ (-l)fc(B+1) (t") [((-l)fe + i82(2r-fc))n + ((-l)fc + «2^-fc))n] 
fc=o ^ ' 

J2 (-l)fc("+D f4^ (L£-fc£(27'~fc)n + ^r_ f ca ( 2 r - f c ) n ) + 2" C 

2E(-l)fc("+1) ( t ) J3r-^C2r-«» + 2" (; 

+ 5"2r2T1 (11) 

<4r 
,2r . D 

R e m a r k 12: In the same manner we can find X^_0 {j)Upix%-
We now list some interesting special cases of Theorems 9 and 11. 

Coro l la ry 13: We have 

2n+l 

£ 

E ( " ) # = ^(3"L2« - Ai~lTLn + 6 • 2"). 

^2n 

2 " , + 1 ) ^ = 5 » F M 
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Proof: The second, third and fifth identities follow from Theorem 11. Now, using Theo-
rem 9, with A = -4=, we get 

-L(_(l+/?)" +(1 + 0 = - ^ = - T = ( - ( 1 + /9)n + (1 + a)n) = -^(a2n - (32n) = F2n. 

Next, the fourth identity follows from 

S^(i) = ^j= E(-i)3-fc Q (i+«fc/?3-fcr 

1 [-(1 + /33)" + 3(1 + ap2)n - 3(1 + a2p)n + (1 + a3)"] 
5V5 

1
 ?[-(2/32)" + 3a" - 3/3" + (2a2)"] = \{2nF2n + 3J?n), 

5V5 5 

since 1 + /33 = 2£2, 1 + a 3 = 2a2. • 
The results in our next theorem are obtained by putting x = — 1 in Theorem 9, and since 

the proofs are similar to the proofs in Theorem 11, we omit them. 
Theorem 14: We have 

S4r,„(-1) = 5 * - 2 r J ] ( - l ) f c ( r\F2T_kL{2T_k)n,ifn is en 
fc=0 ^ ' 

5 4 r , n ( - l ) = - S 2 ^ - 2 7 " J ] ( l)F2r-kF{2T-k)n,ifn IS odd, 

5 4 r + 2 , n ( - l ) = 5 ~ ( 2 r + 1 ) 

fc=0 

2r 

[^(_1) V * )L2T+l_kL{2r+l_k)n-2 ^2r + 1J 

Next we record some interesting special cases of Theorem 9 and 14. 
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Corollary 15: We have 

E ( - l ) ' ( " ) ^ = |((-l)"^-2"+1) 

£(-!)< ( " W = h-2)»Fn -3F2n) 

5Z(-l)Mn)^4 = 5ni±(L2n -4Ln), */n is euen 

£ ( - ! ) ' ( " W = -5^(^+4^) , i/n is odd. 
t=0 W 

Proof: The first identity is a simple application of Theorem 9. The identities for even 
powers are immediate consequences of Theorem 14. Now, using Theorem 9, we get 

53,„(-l) = ^ / g ( - ( l - FY + 3(1 - «/32)" - 3(1 - a2f3Y + (1 - «3)n) 

1 =(-(-2)n/3" + 3/32n - 3a2" + {-2)nan) = \{{-2)nFn - 3F2„), 
5V5 5 

since 1 - ^ 3 = -2£, 1 - a3 = -2a . D 
From (9) we obtain, for r > 1, 

X>l)fc(n+1) (t)^-fci(2r-fe)n + 2"/£) = 0 (mod 52r). 

Similar congruence results follow from other sums in Section 4, and we leave these for the 
reader to formulate. 
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