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1. INTRODUCTION

DeMoivre (1718) used the generating function (found by employing the recurrence) for the

n_gn

Fibonacci sequence ) ;2 Fiz* = ;—%—7, to obtain the identities F, = 0‘—7—5‘2—, L, =a™4p"

(Lucas numbers) with a = 1+2‘/5,,8 = 1“2‘/5. These identities are called Binet formulas, in
honor of Binet who in fact rediscovered them more than one hundred years later, in 1843
(see [6]). Reciprocally, using the Binet formulas, we can find the generating function easily

Y2, Figt = \—}—g 2 olat = Bzt = % (1_1(” - l—lﬁm) = 2%, since of = —lL,a+ =1

A natural question is whether we can find a closed form for the generating function
for powers of Fibonacci numbers, or better yet, for powers of any second-order recurrence
sequences. Carlitz [1] and Riordan [4] were unable to find the closed form for the generating
functions F(r,z) of F¥, but found a recurrence relation among them, namely

(5] ‘
(1—Lyz+ (-1)"2?)F(r,z) =1+rz E(—l)j A;] F(r — 24, (-1)z),
i=1

with A,; having a complicated structure (see also [2]). We are able to complete the study
started by them by finding a closed form for the generating function for powers of any non-
degenerate second-order recurrence sequence. We would like to point out, that this “forgotten”
technique we employ can be used to attack successfully other sums or series involving any
second-order recurrence sequence. We also find closed forms for non-weighted partial sums for
nondegenerate second-order recurrence sequences, generalizing a theorem of Horadam [3] and
also weighted (by the binomial coefficients) partial sums for such sequences. Using these results
we indicate how to obtain some congruences modulo powers of 5 for expressions involving
Fibonacci and /or Lucas numbers.

2. GENERATING FUNCTIONS

We consider the general nondegenerate second-order recurrence, Up,41 = al, +
bU,—1,a,b,Us, U, integers, § = a® + 4b # 0. We intend to find the generating function of
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powers of its terms, U(r,z) = Y o, Urz*. It is known that the Binet formula for the sequence
Uy is Up = Aa™—BpB", where & = L(a++va? + 4b),8 = L(a—+va2 + 4b) and A = U#;;%‘ﬁ,B =
—U{:TUBOE. We associate the sequence V,, = o™ + 8", which satisfies the same recurrence, with

the initial conditions Vp = 2, V; = a.
Theorem 1: We have

r—1
2 AT—2k _ pr—2k + (_b)k(Br—Zkar—2k _ Ar—2kﬂr—2k)w
=3 (—aB)*("
)= 245 () T= () Ve — 727 ’

if v is odd, and

r_1

U(r,z) = » (—AB)*
k=0

r Br—-2k + Ar-—2k _ (_b)k(Br—-Zlca'r—-2k + Ar—Zkﬂr—Zk)m
k 1— (=b)tVr—gkz + b z?

r\ (—AB): . .
+ (%) I—:—(———_b)—;_—;, if T is even.

Proof: We evalute

i) =3 (32 (1) acmsyt) o

Ak(_B)r—k i(akﬂr—kx)i

Jrenry
)

1
AF(—By T ——
—~ ( ) 1— akﬂr«k_z-

k
If r is odd, then associating k <> r — k, we get

rz;] r Ar—kBk AkBr-—k
U(r,z) = Z(_l)k (k) (1 —arkBky 11— a’“ﬂ“’“z)
k=0

-1

..,r

I

W [T\ ATTEBE — ARBT—F  (ARBr—Eqr-kgk _ AT—kpBkokgr-k)g
(_1) k 1— (akﬂr—k‘ + ar—kﬂk)w + arIBr$2

B
Il
o

r—1
— i( 1)k r\ AT-kBk _ AkBT__k + (—b)k(AkB"_kaT—% _ AT""B"’IBT“%):C
) 1 — (—=b)kVi_zpz — b2

k=0 .
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If r is even, then associating k <> r — k, except for the middle term, we get

.1
B 2 W7 Akpr—k ATk Bk r A%(_B)%
Ulr,z) = kzﬂ)(_l) (k;) (1 —akpr-kg + 1- a"'k,BkIB) * ( ) 1—(=b)iz

r
2

r-1

B Z(_l)k (T) AkBr—Ic + Ar—chk _ (AkBr_kar_k,Bk +Ar_kBkakﬂ'"k)$
1;—-0 k 1— (akIBr—k + ar—kﬂk)m + arﬂr$2

+ (’r) (-AB)?
£)1—(=b)iz
g—l(_l)k r AkBr—k + Ar—kBk _ (_b)k(AkBr—kar—Zk + Ar—kBk‘Br—ﬂ:)z
B 1 — (=b)FVi—2kx + bTz?
r\ (—AB)?
e T 7T
(5) 1—(-b)zz

If Uy =0, then A =B = a’{_‘ﬁ, and in this case we can derive the following beautiful
identities.

Theorem 2: We have

o5 k
N _ar—1 T b*Uyr_opx .
Ulr,z) = A ,; (k) T BT A— L if r 1is odd

-1

_ g k(T 2~ (=b)* Ve r\ (-1)zA" ., .
v =4 ,CZ;:,( g (k)l—(—b)’“V_zkw+b'a:2 ) T (pyre T e

Corollary 3: If {U,}n is a nondegenerate second-order recurrence sequence and Uy = 0, then

Ul.'z:

VL2 = 1 g M
UZz(1 — bz)
2 =
V@2) = Go i D@2~ ez 7 1) @
6 A%U1z(1 — 2abz — b3z?)
U = ;
(3:2) = T Vaw — 50%)(1 + bViz — b°o%) ®)
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Proof: We use Theorem 2. The first two identities are straightforward. Now,

U3:L‘ 3 bU1$
UBB,z) = A? [ ———"—— ot
(3,2) (1—V3:L'——b3x2+(1)1+bV1:c—b3:1:2)

Us + 3bU; + b(U3‘/1 — 3U1VE:,)£L‘ — b3 (U3 + 3bU1)$2

= A?
* (1 — Vaz — b322)(1 + bViz — b3z2)

. 0A%2U 1z(1 — 2abz — b3z?)
(1 - Vaz — b322)(1 + bViz — b3x2)’

since Us + 3bU; = (a2 + 4b)U; = 6U; and UsV; — 3U1 Vs = —2a6U;. 0O

Remark 4: If U, = F,,, the Fibonacci sequence, then a = b =1, and if U, = P,, the Pell
sequence, thena =2,b= 1.

3. HORADAM’S THEOREM

Horadam [3] found some closed forms for partial sums S, = Y o Pi, S—n = Yy Poiy
where P, is the generalized Pell sequence, P,y1 = 2P, + P,_1, PA = p, P» = q. Let p, be
the ordinary Pell sequence, with p = 1,q = 2, and ¢, be the sequence satisfying the same
recurrence, with p = 1,q = 3. He proved

Theorem 5 (Horadam): For any n,

San = q2n(Pg2n—1 +qg20) + P — ¢; Sin—2 = qan—1(Pg2n—2 + qg2n-1)
Sin+1 = q2n(Pg2n + q92n+1) — ¢ Sin-1 = q2n(Pg2n—2 + qq2n—-1) — P
S_1n = gon(—Pgon+2 + 992n+1) +3p — ¢ S—sn+2 = gon(—Pg2n + qg2n—1) + 2p
S—tn+1 = @2n(Pg2n+1 — 9920) + P; S_tn—1 = gan+1(Pg2n+2 — 992n+1) + 20 — ¢.

We observe that Horadam’s theorem is a particular case of the partial sum for a non-
degenerate second-order recurrence sequence Uy,. In fact, we generalize it even more by finding
SY (z) = >i_o Ul «*. For simplicity, we let Uy = 0. Thus, U, = A(e™—") and V, = o™ +5".
We prove
Theorem 6: We have

r—1
z _ {_n\kn n _p\r+k(n—-1) n+1
U r—1 o [T\ Ur—2k — (=0)*"U(r—2k)(n+1)x" + (D) Ur—2k)n®
= E 4
Spr() = A $k=0b (k) 1— (—b)kV_opz — bT2? 4
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if 7 is odd, and

stote) =a 7 () P = ié(_”k (&)

(%)
2 — (=0) Vr_gkz — (=) ™DV iy (nay@™ T + (=B) HE Vo)™ t?
1 — (=b)*Ve_opx + b2 ’

if T is even.

Proof: We evaluate

7@ =33 (1) (Ao (- apty-+o
’ =0 k=0 (k>
— AT . (_1)r—k r - (akﬂr—kz)i
k=0 <k) ;

A1yt (2) (ehpr=rayi—1

kRr—k,p __
Pt akpr—kg —1
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Assume 7 is odd. Then, associating k <> 7 — k, we get

SU (z) = A ’Z;(—l)k (;) ((a'l‘—kﬂkx)n+1 —1  (akgrhg)nti— 1)

arkgkg — 1 akpr—kz —1

r—1
2 kgr—k, _ 1)(a(r—k)(n+l)ﬂk(n+1)wn+1 _ 1)
— A" -1 k (T) (a ﬂ Z
kE_O( 4

—'(Cir_kﬂk(b' _ 1)(ak(n+1)ﬂ(r—k)(n+1)$n+1 _ 1)
(a’“ﬂ"‘kz _ 1)(a"‘kﬂka: — 1)

) (ar(n+1)—knﬂr+knzn+2 _ a(r-k)(n+1)ﬂk(n+1)zn+1

=AY (-1)F (;
k=0

_akﬂr—kw _ ar+knﬂr(n+1)—knzn+2 + ar—kﬂkx

+ak(n+l)ﬁ(r—k)(n+l)xn+1
1— (_b)k(ar—2k + ﬂr—2k)z + aT,BTx2

2 r (_b)k(ar—zk _ IBr—zk)x _ (_b)k(n+1)(a(r—2k)(n+1)
-1 (})

;;
]

_ﬂ(r—Zk)(n+1))xn+1 ¥+ (_b)r+kn(a(r—2k)n _ ﬂ(r—2k)n)$n+2
1— (=b)kV,_gpx — b2

1‘—_1
_qr-lg i (T Ur—2k — (—=0)*"Ur—apy(n41y@™ + (=) TFO=DU_opy,znH
N =" \k 1 — (=b)kV,_gxx — b7x2 '

Assume 7 is even. Then, as before, associating k <> r — k, except for the middle term, we
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get

z-1 - -
. ™\ 2 — (=b)k(aT—2k 487 2k z—(=b k(n+1) a(r—Zk)(n+1)
k=0

+ﬂ(r—2k)(n+1))wn+1 + (_b)r+kn(a(r—2k)n +ﬁ(r—-2k)n)wn+2
1— (=b)*Vy_okz + bz

. . r (—b)%("+1)w"+1—1
w0 () g

2

() LR ()

2

2 — (=b)*Vp_akx — (=0)* "IV oy (nany2™ ! + (=0) TPV _gpynz™t?
1 —(=b)kV,_gpx + brz? )

O

Taking r = 1, we get the partial sum for any nondegenerate second-order recurrence
sequence, with Uy = 0,

. QU (1) — 2(U1=Ung1z" =bUnz™+!)
Corollary 7: Sn,l(“") = 1n—Vl:z—bzzn

Remark 8: Horadam’s theorem follows easily, since S, = Sf,(1). Also S_, can be
found without difficulty, by observing that P_p, = pp_p—2 + gp—n—1 = —p(—1)" 2ppys —
q(=1)"*'ppy1, and using S}, 1(-1).

4. WEIGHTED COMBINATORIAL SUMS

In [6] there are quite a few identities like > 7 (?)Fi = Fan, or > i (?)F?, which is

n—1

502711, if n is even, and S[HT_I]F,L, if n is odd. A natural question is: for fized r, what is
the closed form for the weighted sum » ., (’:)F{ (if it exists)? We are able to answer the
previous question, not only for the Fibonacci sequence, but also for any second-order recurrence
sequence Up, in a more general setting. Let Spq(x) =Y 1, (7)Urz*.

Theorem 9: We have

T

Sen@) = 3 (1) A5 CBy @+t o).

k=0

Moreover, if Uy =0, then Spn(z) = A7 Y 1 _o(-1)""*(}) (1 + akpr—Fz)".
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Proof: Let
Srn(z) = En: (TZ) ,:0 (;) (Aa))k(—BpH kgt

- <,:) AF(—B)yr* Xn; (’Z‘) (e*B * )

k=0 i=
_y (Z)A’“(—B)’"’“(l +akpr k)

If Up = 0, then A = B, and Srn(z) = A" 5_o(-1)* (D)1 + affr—Fz)". O

Although we found an answer, it is not very exciting. However, by studying Theorem 9,
we observe that we might be able to get nice sums involving the Fibonacci and Lucas sequences
(or any such sequence, for that matter), if we are able to express 1 plus/minus a power of a, 3
as the same multiple of a power of a, respectively §. When U, = F,,, the Fibonacci sequence,

the following lemma does exactly what we need.

Lemma 10: The following identities are true

a2s _ (_1)3 — \/gast

ﬂ2s _ (__1)3 — _ﬁﬂst
a2s + (_1)3 — Lsas
B + (-1)° = L,p".
Proof: Straightforward using the Binet formula for F; and L;. O
Theorem 11: We have

2r
ntl r 47' + 2 . -
Sari2a(l) =572 ~@+D) E ( k > or+1—kFn(2r+1-k), f 1 is odd

2r
T oa 4 2
Sary2.n(1) = 53— (2r+1) E (——1)'“( T )F;r+1—kLn(2r+1—k)7 if n is even

k=0 k
2r—1 4"' 47,
S41‘,-n.(1) — 5—2‘!‘ l:;) (_l)k(n+1) ( k )Lgr—kL(2T—k)n + 2'"- <2T):| .
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Proof: We use Theorem 9. Associating k <> 4r + 2 — k, except for the middle term in
Sar42,n(1), we obtain

2r
S4r+1n(1)::5*(””4)553(—1)k(4T2‘2> [Cl%—akﬂ4r+2_k)n—&(1_+(fh+2—kﬂk)”]
k=0

— 5—(2r+1) ZT(—l)’“ (47': 2) [(1 + (_l)kﬂ4r+2—-2k)" +(1+ (_l)ka4r+2—2k)"]
k=0

_ 5-(r+1) i(~1)k(n+l) (41'];# 2) [((_1)k + ﬂ2(2r+1—k))n + ((—1)’“ + a2(2r+1_k))n](1'0)
k=0

We did not insert the middle term, since it is equal to

4r + 2

5—(2T+1) -1 2741
(=1 2r+1

) (1 + a2'r+1ﬂ2r+1)n

4r 4+ 2
— g—(2r+1) —1 2r+1 1 -1 2r+1yn __ 0.
smer (- (37 ) 1 (-1

In (10), using (6), and observing that @?(7+1=F) 4 (_1)k = o2@r+1-k) _ (_1)2r+1-k we get

27
— 4r + 2\ _» - 41—
S4r+2,n(1) =5 (2r+1) Z(—l)("+1)k( L )52 ;r—l-l—-k ((_1)nﬂn(2r+1 k) +an(2 +1 k)) .
k=0

Therefore, if n is odd, then

27

_ 47"!'2 ntl

S4'r+2,'n,(1):5 (@r+1) E ( k )5 2 F21:-+1__];;Fn(2r+1—k)
k=0

and, if n is even, then

27
Surgan(l) =5t (_1)k

(47‘ + 2
k=0

E ) 55 F3 11 kLnrii-k)-
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In the same way, associating k <> 4r — k, except for the middle term, and using Lemma 10,
we get

2r—1

st S () ot s o (4

2r—-1

— g2 Z( 1)k(n+1)( ) [(( 1) + ﬁ2(2r—k))n+ ((_1)k+az(2r-k))”]

4r
—2ron
+572rg (2T> (11)

[2r—1

4r 4r
— =27 _1\k(n+1) (2r—k)n n (2r—k)n n
5 E (-1) <k>( or—kB + Ly o )+2 (2r)]

L k=0

[2r—1

_ 4r 4r
=5 27 Z ( 1)k(n+1) ( k )L27‘ kL(21‘—-k)’n. + 2n (27‘>:| .

L k=0

Remark 12: In the same manner we can find Y . (’:) U;-avi.
We now list some interesting special cases of Theorems 9 and 11.

Corollary 13: We have

(-
3
N’
ﬂ.ﬁ
Y
I
A
(9Y)
3
I~
1M
3
|
>
—~~
—
N’
3
b(
+
D
(3]
B
~—
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Proof: The second, third and fifth identities follow from Theorem 11. Now, using Theo-
rem 9, with 4 = ‘/Lg, we get

1
Sl,n(l) — % Z(_l)l——k (:}) (1 + akﬁl_k)n
k=0

1 n ny _ _ A2ny _
=%(—(1+ﬂ) +(1+a)") = B") = Fon.

1 T
el

Next, the fourth identity follows from

Snl1) = 57 () gy

_ 1 3yn aB2)" — a2B)" 1B
_5\/5[ (148" +3(1+af*)" = 3(1+a”B)" + (1L + a*)"]

1 1
= —[-(28%)™ + 3a™ — 38" + (2a%)"] = Z (2" Fyy, + 3F,),
5\/5[ ( ﬂ ) ﬂ ( ) ] 5( 2n n)
since 14+ 8% =282, 1+ a8 =%? 0O
The results in our next theorem are obtained by putting £ = —1 in Theorem 9, and since

the proofs are similar to the proofs in Theorem 11, we omit them.
Theorem 14: We have

2r—1

n_ 4r . .
Sira(~1) = 5777 Y :(—1)k(k>F;,_kL(2r_k)n, if n is cven,
k=0

2r—-1

n+1 4

Sprn(—=1)= -5z ~% E (’:) F iy Far—k)n, if n is odd,
k=0

2r
—(2r nfdr+2 ar + 2
S4r+2,n(*1) =5 (2r+1) |:§ (_1)k(n+1)+ ( k )Lg‘r+1-—kL(2T+1—k)" -2" (2,,. + 1)
k=0

Next we record some interesting special cases of Theorem 9 and 14.
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Corollary 15: We have

0]
N
Il
|
—~~
|
ot
—
3
B~
3
I
3]
3
+
-
—

()

_En:(—l)" (7) F} = %((—2)”?«" — 3Fy,)
( )F:‘ =5"7" (Lan — 4Ly,), if n is even
(

(1 4 n=3 . .
Z(-—l)’ Z)FZ = —5"7 (Fon +4F,), if n is odd.

Proof: The first identity is a simple application of Theorem 9. The identities for even
powers are immediate consequences of Theorem 14. Now, using Theorem 9, we get

S3n(-1) = #(—(1 — B +3(1 - af?)" - 3(1 - a?B)" + (1 — &®)™)
1 ngn 2n 2n nony_ 1 n
= cp (D" 4 367" — 30" + (=2)"a") = £((=2)"Fn — 3Fm),

sincel -3 =-28,1-a®=-2a. DO
From (9) we obtain, for r > 1,

2r—1 dr Ar
(_1)k(n+1) ( k )Lgr—kL@T—k)n +2" (2’,_) =0 (mod 521‘).
k=0

Similar congruence results follow from other sums in Section 4, and we leave these for the
reader to formulate.
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