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P R O B L E M S P R O P O S E D I N T H I S I S S U E 

H-603 P r o p o s e d by t h e E. H e r r m a n n , Siegburg, G e r m a n y 
Show that if n > 3 and n = 1 (mod 2), then 

En j ~ Fn+2k -Tn-1 
< 

However, if n > 4 and n = 0 (mod 2), then 

K _ I < 2-/ F . < 
n-l ^Z^ Fn+2k En-2 

H-804 P r o p o s e d by M a r i o Cata lan! , Torino, I t a ly 
In H-592, the proposers introduced, for n > 2, a nondiagonal n x n matrix A such that 

A2 = xA + yJ, where x, y are indeterminates and I is the identity matrix. 
a) State the conditions under which all the eigenvalues of A are equal. 
b) Assume now that not all the eigenvalues of A are equal. Assume that A is a 2n x 2n matrix, 
and that tr(^4) = nx. Consider the Hamilton-Cayley equation for A 

2n 

£(-i)feAfcA2n-fc = o, 
A;=0 

where AQ = 1. Find X f̂c=o ^ 

H-6Q5 P r o p o s e d b y Jose Luis Diaz -Bar re ro & Juan J o s e Egozcue, Barce lona , Spain 
Find the smallest integer h for which X0an + Aian_i H h \kan+k = 0 holds for all n > 1 

with some integers Ao, . . . , A* not all zero, where {an}n>iis the integer sequence defined by 
L(n-1)/2J / . L(n-1)/2J 

- ( E (2;+1)2')( s M™»-1=0 \ • / g-0 
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S O L U T I O N S 

Some p roper t i e s of t h e n u m b e r 5 
H-591 P r o p o s e d by H. - J . Sieffert, Berl in , G e r m a n y 

(Vol. 409 no . 5, November 2002) 
Prove that 3 for all positive integers ra, 
(a) 

(b) 

(c) 

(d) 

5"F2 n_1 = g (_i)L(4»+3*)/5j/4n + l \ 

5 |/2n-fc+3 

2n+ l /A Q X 
5nL*n= E (- i)L(^+3*-3)/5j/4n + 3 \ 

5 l/2n-fc+4 

fc=0 
5 ^/2n-fe+l 

5"-li— t (V) 
5 \/2n-k+2 

where |_ J denotes the greatest integer function. 
Solut ion by t h e p ropose r 

Define the Fibonacci polynomials by F0(x) = 0, Fi(x) = 1, and i^ + 2 (x ) = xFk+i(x) + 
Fk{x) for k > 0. Prom H-492, we know that, for all complex numbers x and y and all 
nonegative integers n, 

Ln/2J 

J ] ( )jP„_2fc(x)F„_2A;(j/) = z^F^xy/z), 
fc=o ^ ' 

where z = y/x2 + y2 + 4. Replacing n by 2n + 1 and taking y = 0, after a suitable reindexing, 
we obtain 

i — n \ / 
|F2fc+1(x) = (x2 + 4 r . (1) 

k=o x 7 

Let Bk = (—l)feF2^+i( ia) , ft > 0, where i = \f^1 and a is the golden section. Then, the 
sequence {-B^}^>o satisfies the recursion Bk+2 = — fiBk+i — Bk for k > 0, where /? is the 
conjugate of a, and a simple induction argument shows that 

( 1 if Jfe = 0 ( m o d 5 ) ? 

a if k = 1 (mod 5), 
Bk=l 0 if feE0(m.od5), (2) 

—a if A; = 0 (mod 5), 
[ - 1 if ]fe = 0 (mod 5). 
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Since 4 - a2 — —\/5/3, identity (1) with x — ia gives 

E ( - 1 ) f c ( 2 n ^ 1 ) ^ = (-1)"5n/2^-
fc=o ^ n ' 

Define the sequences {cfe}fc>o and {dk}k>o by 

1 ifk = 0 (mod 5), 

(3) 

Ck—\ —1 ifk = 4 (mod 5), and dk = { 
0 otherwise, 

f 1 ifk = 1 (mod 5), 
- 1 ifk = 3 (mod B), 

[ 0 otherwise, 
and let 

fc=0 x 7 fc=0 v ' 

Then, by (2) and (3), Sn + aTn = ( - l ) n 5 n / 2 / 3 n . Since 2/3" = Ln - V5Fn, we then have 

f 5"/2Ln - 5 ( n + 1 ) / 2 F n if n is even, 
25 n + 2aTn = i 

[ 5 ( n + 1 ) / 2 F n - 5n/2Ln i fn is odd. 

Using 2a = 1 + -\/5 together with the fact \ /5 is irrational, we then must have 

5n'2Ln if n is even, 
2S„ + Tn = 

and 

Tn = 

5(n+1)/2Fn i fn is odd, 

- 5 n / 2 F „ if n is even, 

_ 5 ( n - i ) / 2 L n i f n i s o d d 

(4) 

(5) 

Substracting (5) from (4) yields 

f 5 n / 2 ( F n + L„) i fn is even, 
2Sn = { 

{ 5 ("-1 ) / 2 (5F„ + Ln) i fn isodd. 
(6) 

Dividing (6) by 2, subtracting the resulting equation from (4), and noting that Ln—Fn = 2Fn_i 
and 5Fn — Ln = 2L n _i , we find 

Sn + Tn = < 
f 5 n / 2 F n _ ! i fn is even, 

5 (»-D/3£ B _ 1 ifn ^ o d d . 
(7) 
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On the other hand, from 

, MJ r (_i)L^/5J i f ^ 2 ( m o d 5 ) 3 
Ck + dk — < 

y 0 otherwise, 
we get 

sn+Tn= J2(-i)l7k/51(2n+!:). (8) 
fc=o \n k J fc=0 

The desired identities (a) and (b) now easily follow from (7) and (8) by repacing n by 2n 
(respectively, by 2 n + 1), and reindexing. 
Multiplying (5) by 3, substracting the resulting equation from (4), and noting that Ln-\-3Fn = 
2Fn+2 and 5Fn + 3Ln = 2£ n + 2 , we obtain 

bn — Tn 

hn'2Fnjr2 i fn is even, 

5{n~1)/2Ln+2 i fn is odd. 
(9) 

Since 

_ f ( - l ) L ( 4 f c + 1 ) / 5 j i f ^ 2 ( m o d 5 ) , 
[ 0 otherwise, 

we have 

Sn~Tn= J2(-V[(9k+1)/5i(2n^)- (10) 
fc=0 ^ ' 

5 ^ + 3 

The desired identities (c) and (d) now easily follow from (9) and (10) by repacing n by 2n — 2 
(respectively, by 2n — 1), and reindexing. 
Also solved by P a u l B r a c k m a n a n d Vincent M a t h e . 

Mat r i ces satisfying quad ra t i c equa t ions 

H-592 P r o p o s e d by N* G a u t h e i r & J . B . Gosselinf Royal Mi l i t a ry College of C a n a d a 
(Vol. 409 no . 5, November 2002) 

For integers m > 1, n > 2, let X be a nontrivial n x n matrix such that 
X2 = xX + yl, _ _ % (1) 

where x, y are indeterminates and I is a unit matrix. (By definition, a trivial matrix is 
diagonal.) Then consider the Fibonacci and Lucas sequences of polynomials, {Fi(x,y)}^l0 

and {Li(x,y)}fl0, defined by the recurences 

F0(x,y) = 0, Fi(x,y) = l, Fl+2(x,y) = xFl+1(x,y) + yFl(x,y), (2) 

L0(x,y) = 2, Li(x,y) = x, Li+2(z,y) = xL^i(x,y) + yLt(x,y), (3) 
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respectively. 
a. Show that 

Xm = amX + bmyl and that Xm + ( - y ) m X ~ m = cmI, 
where am, 6m, and Cm are to be expressed in closed form as functions of the polynomials (2). 

b . Now let n 

/(A; x, y) = \XI - X\ = £ ( - I f — A n _ m A ™ 

be the characteristic (monic) polynomial associated to X, where the set of coefficients, 
{Xi~Xi(x,y);0<l<n} 

is entirely determined from the defining relation for f(\\x,y). For example, AQ = 1, Ai = 
tr(X), Xn = det(X), etc. Show that 

n n 
J ] ( - l ) r o A „ _ r o F m ( x , j / ) = 0 and that y ^ ( - l ) m A „ _ r o F m _ i ( a ; , p ) + A„ = 0. 
m = l m = l 

Solut ion by t h e p roposers 
a. First note that X has an inverse since X(X — xX) = y j implies det(X) =̂  0 (here, y 

is assumed to be a nonzero indeterminate). We prove by induction on ra > 1 that 

Xm = Fm(x,y)X + yFm^1(xJy)I, (3) 
and that 

Xm + (-y)mX-m = Lm(x,y)I, (4) 
so am = Fm(x,y), (x,y) and cm = Lm(x,y)„ it is clear that (3) is true for ra = 1 
and 2. Now assume its validity for an arbitrary value of ra and multiply (3) by X to get 

Xm+1 = Fm(x,y)X2 + yFm-xX = Fm(x, y)(xX + yl) + yFm^(x9 y)X 

= (xFm{x, y) + yFm^t(x, y))X + yFm{x, y)I = FTO+1f>, y)X + yFm(x, y)I, 

which is formula (3) for m + 1. To prove (4), note that it is true for ra = 1 since (1) implies 
X — yX™1 = xl. Squaring this last result then shows that (4) also holds for ra = .2. Now 
assume that (4) holds for ra > 2 and multiply it by X — yX™1 = xl to get 

( X - + 1 + (-p)T O + 1X-<m + 1>) + (-yX™'1 + (-y)mX-lm-V) - xLm{x,y)I, 

i.e., 
Xm+1 + ( -y) T O + 1 X-( r a + 1 ) = y(Xm^ + ( - y ) ^ - 1 ^ - ^ - 1 ) ) + x i m ( x ? y ) I 

= yLm-i(a ; ,y)J + a : I rm(a; ,y) /=Irm + i (a ; ,y) / , 

which proves that (4) holds for ra + 1 as well. 
b® According to the Hamilton-Cayley theorem, if/(A; x, y) is the characteristic polynomial 

associated with the matrix X, then f(X\x,y) — 0. Consequently, upon cancelling out an 
overall factor of (—l)n and upon using (3) for X m , we find that 

n n 
0=Y^(-l)m><n-mXm=^r/(-l)m\n„m(Fm(x,y)X + yFm-1(x,y)I) + \nI, 

m=0 m = l 
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which leads to the formulae given in the statement of the problem when X and I are linearly 
independent, i.e., in nontrivial cases. 

Vincent Mathe points out that that in the case y = 0 the matrix X is not necessarily 
invertible; see for example, the Solution of H-578, vol. 40, pages 474-476. 
Also solved by P a u l B r u c k m a n , Mar io Cata lani ? Toufik M a n s o u r a n d Vincent 
Mathe* 

A Lucas p r i m e congruence 

H-593 P r o p o s e d by H. - J . Seiffert, Berl in , G e r m a n y 
(Vol. 4 1 , no . 1, Feb rua ry 2003) 

Let p > 5 be a prime. Prove the congruence 

L(P"5)/10J k ! 

* E ^ T ^ 1 ) " - 1 " 2 ^ ^ ) -
Solut ion by t h e p ropose r 

It is wellknown that Lp = l (modp). Since by Fermat's Little Theorem, 2 P _ 1 = 1 (modp), 
we see that the expression appearing on the right hand side of the desired congruence is an 
integer. 
From H-562, we know that, for all nonnegative integers n, 

L(n-2)/5j . v 

» E „ 5t-2 )=<"-w. (i) 
k=0 X 7 

If k is an integer such that 0 < k < |_(jP — 5)/10j, then 

I p — 5 
p > ^ - 5 f e - 2 > ^ - 5 p - 1 P - 5 

_ 2 > - r - - 5 l Q 2 - 0 , 10 
because (p — 5)/10 is not an integer. Since, as is known, 

1 fp\ ( - l ) i - 1 

- . = ^—'- (modp) for j = 1 , . . . , p - 1, 
P\jJ 3 

relation (1) with n = (p — l ) /2 gives 

^ (p - l ) /2 - 5Jb - 2 p v F ; 

Multiplying by ( - l ) ^ - 1 ) / 2 and noting that 

- 5 - 1 0 2 
(p - l ) /2 - 5k - 2 p - 10k - 5 2fc + 1 

gives the desired congruence. 
Also solved by P a u l Brackman* 

Please Send in Proposa l s ! 

(mod p) 
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