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PROBLEMS PROPOSED IN THIS ISSUE

H-603 Proposed by the E. Herrmann, Siegburg, Germany
Show that if n > 3 and n = 1 (mod 2), then

1 201 1
_<< < .
F, kgo Fnyor  Fn-

However, if n > 4 and n = 0 (mod 2), then

1 1 1
< < .
F,_; ; Foior  Fu-2

H-604 Proposed by Mario Catalani, Torino, Italy
In H-592, the proposers introduced, for n > 2, a nondiagonal n x n matrix A such that
A? = g A+ yI, where z, y are indeterminates and I is the identity matrix.

a) State the conditions under which all the eigenvalues of A are equal.

b) Assume now that not all the eigenvalues of A are equal. Assume that A is a 2n X 2n matrix,
and that tr(A) = nz. Consider the Hamilton-Cayley equation for A

2n
Y (DFAAE =0,
k=0

where Ao = 1. Find 4% M.

H-605 Proposed by José Luis Diaz-Barrero & Juan José Egozcue, Barcelona, Spain
Find the smallest integer k for which Agan + A1@n—1+ -+ Ag@nir = O holds for all n > 1
with some integers Ao, ..., Ar not all zero, where {an},>1is the integer sequence defined by

Ln=1)/2]
n = ( 211 1) Ze) ( EZ;O §an1 <2427jr 1) 54)_
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SOLUTIONS

Some properties of the number 5
H-591 Proposed by H.-J. Sieffert, Berlin, Germany
(Vol. 40, no. 5, November 2002)
Prove that, for all positive integers n,

(a) on
dn+1
5nF2n-—1 — (_1)|_(4n+3k)/5j ( )’
5 V:ZBIH-(! b
(b)
2n+1
dn + 3
5nL2n — (_1)[(4‘n+3k—3)/5j ( > ,
5 V;Z:;k-)—‘i g
(c)
2n—2 dn — 3
5n_1F2n — (_1)[(8n+k+3)/5J ( ) ,
2 E
(d) 5 V2n—k+1
2n—1
5n—1L2n+1 — Z (4nk— l) :
5 Y onokt

where | | denotes the greatest integer function.
Solution by the proposer

Define the Fibonacci polynomials by Fo(z) = 0, Fi(z) = 1, and Fgyo(z) = zFppa(z) +
Fi(z) for k > 0. From H-492, we know that, for all complex numbers  and y and all
nonegative integers n,

Ln/2]
S (3) Fa-n@)Facants) = 2 Palou),

k=0

where z = /22 4+ y? + 4. Replacing n by 2n+ 1 and taking y = 0, after a suitable reindexing,
we obtain

n
2n+1
Z ( k ) F2k+1(:L') = (1!2 + 4)"’. (1)
k=0 n-
Let By = (—=1)*Fok41( i@), k > 0, where i = +/—1 and a is the golden section. Then, the
sequence {Bj}r>o satisfies the recursion Btz = —fBg41 — By for k > 0, where S8 is the
conjugate of a, and a simple induction argument shows that
if k=0 (mod 5),
a ifk=1(mod5),
By = 0 if k=0 (mod 5), (2)

—a  if k=0 (mod 5),
-1  if k=0 (mod 5).
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Since 4 — a® = —/5p, identity (1) with £ = ia gives

n
Z(_l)k(2n + 1) By = (—1)n5n/2,3n.
n—=k
k=0

Define the sequences {cx}r>0 and {dx}r>0 by

1 ifk=0 (mod 5), 1 ifk=1 (mod5),
-1 ifk =4 (mod 5), and dp=< —1 ifk=3 (mod?5),

0 otherwise,

0 otherwise,

Cp =

and let

n

s, = zn:(—nk(%* 1) e and Tp= Z(—l)k(?':j]:)dk.

-k
k=0 n k=0

Then, by (2) and (3), Sp + aT}, = (—1)"5"/28". Since 28" = L, — v/5F,, we then have

5%/2L, —5(™*tV/2E. ifn is even,

28, + 2aT, =
5(ntD/2p, _57/2L,  ifn is odd.

Using 2a =1+ V5 together with the fact V5 is irrational, we then must have
5"/2L, ifn is even,

28, + Ty =
5(n+D/2E ifn s odd,

and
—5™2F,  ifn is even,

T, =
—5=D/2L, ifn is odd.
Substracting (5) from (4) yields
5"%(F, + L,) ifn is even,

28, =
5(n=V/2(5F, + L,) ifn is odd.

©)

4)

(5)

(6)

Dividing (6) by 2, subtracting the resulting equation from (4), and noting that L, —F, = 2F,_;

and 5F, — L, = 2L,_,, we find
5"2F. if n is even,

Sn + T, =
5(n=D/2F . ifn is odd.
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On the other hand, from

—1)2k/51 f g2
ord D it b 2 (mod 5),
0 otherwise,

we get

S.+T= 3 (e (Pl ®

k=0
5k+3

The desired identities (a) and (b) now easily follow from (7) and (8) by repacing n by 2n
(respectively, by 2n + 1), and reindexing.

Multiplying (5) by 3, substracting the resulting equation from (4), and noting that L, +3F, =
2Fp42 and 5F, + 3L, = 2L, 5, we obtain

5"/2Fn+2 if n is even,
S —Tp = 9)
5(n=U/21 . ifn is odd.

Since
(—1)LER+D/5] if k£ 2 (mod 5),
ek —dp = .
0 otherwise,
we have
= 2n + 1
_T = _1)L(8k+1)/5]
Sy — Ty g( 1) (n_k) (10)
5lk+3

The desired identities (c) and (d) now easily follow from (9) and (10) by repacing n by 2n — 2
(respectively, by 2n — 1), and reindexing.
Also solved by Paul Bruckman and Vincent Mathe.

Matrices satisfying quadratic equations

H-592 Proposed by N. Gautheir & J.B. Gosselin, Royal Military College of Canada
(Vol. 40, no. 5, November 2002)
For integers m > 1, n > 2, let X be a nontrivial n x n matrix such that
X2 =zX +yl, (1)
where z, y are indeterminates and I is a unit matrix. (By definition, a trivial matrix is
diagonal.) Then consider the Fibonacci and Lucas sequences of polynomials, {Fi(z,y)}{2,
and {Li(z,y)}2,, defined by the recurences

Fo((l:,y) = 07 Fl(.'ll,y) = 17 Fl+2(l‘ay) = .'E'Fll+1($,y) + sz(.’s,y), (2)
Lo(:ﬂ,y) = 21 L1($,y) =1z, L1+2($,y) = $L1+1($ay) + yLl((U,y), (3)
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respectively.
a. Show that
X™ =amX +bpyl and that X7+ (—y)"X ™™ = cpd,
where @, by, and ¢, are to be expressed in closed form as functions of the polynomials (2).

b. Now let n
HOSERTEVED (I Y C8 D) M v

m=0
be the characteristic (monic) polynomial associated to X, where the set of coefficients,
{M=NM(z,y);,0 <1< n}

is entirely determined from the defining relation for f(A;z,y). For example, Ao = 1, A\; =
tr(X), A, = det(X), etc. Show that

S (D)™ hnemFun(z,y) =0  and that ¥ > (~)™An-mFm-1(z,y) + An =0.

m=1
Solution by the proposers
a. First note that X has an inverse since X (X — zX) = yI implies det(X) # 0 (here, y
is assumed to be a nonzerc indeterminate). We prove by induction on m > 1 that
X :Fm(myy)X+yFm—1($7y)Ia (3)
and that
X"+ (=)™ X ™™ = Lin(z,9)], 4
80 G = Fr(z,Y), bm = Fr—1(z,y) and ¢y, = Ly (2, y). It is clear that (3) is true for m =1
and 2. Now assume its validity for an arbitrary value of m and multiply (3) by X to get

X+l = m(-'lf',y)Xz +yFpaX = Fm(.’l;,y)(J?X +yI) +yF, _1(z,y)X

= (xFm(z,y) + yFm-1(2,¥)) X + yFr (2, 9)] = Frog1 (2, ) X + yFou(z,9)1,

which is formula (3) for m + 1. To prove (4), note that it is true for m = 1 since (1) implies
X — yX~1! = xI. Squaring this last result then shows that (4) also holds for m = 2. Now
assume that (4) holds for m > 2 and multiply it by X — yX~ = 2T to get

(E™H 4 ()X (X ()X ) = oL (),
Le., ‘
xmtl + (__y)m+1X—(m+1) — y(Xm—l + (_y)m—lX—(m—l)) + wLm(:r;,y)I
= yLm—1($1 y)I + me("I"7y)I = Lm+1($7y)1—7

which proves that (4) holds for m + 1 as well.

b. According to the Hamilton-Cayley theorem, if f(A; z,y) is the characteristic polynomial
associated with the matrix X, then f(X;z,y) = 0. Consequently, upon cancelling out an
overall factor of (—1)" and upon using (3) for X™, we find that

0= (-D™hemX™ = > (=)™ Anem(Fm(@, )X + yFracs (2, y)I) + Al

m=1
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which leads to the formulae given in the statement of the problem when X and I are linearly
independent, i.e., in nontrivial cases.

Vincent Mathe points out that that in the case y = 0 the matrix X is not necessarily
invertible; see for example, the Solution of H-578, vol. 40, pages 474-476.

Also solved by Paul Bruckman, Marioc Catalani, Toufik Mansour and Vincent
Mathe.

A Lucas prime congruence

H-593 Proposed by H.-J. Seiffert, Berlin, Germany
(Vol. 41, no. 1, February 2003)
Let p > 5 be a prime. Prove the congruence

Lp—5)/10] k -1
(=1)% _ (_1)(p—1>/2u (mod p).
p

2 k+1

b

k=0

Solution by the proposer

It is wellknown that L, = 1 (mod p). Since by Fermat’s Little Theorem, 2P~ = 1 (mod p),
we see that the expression appearing on the right hand side of the desired congruence is an
integer.
From H-562, we know that, for all nonnegative integers n,

L(n—2)/5J( o+ 1

5 Z n—5k—2

k=0
If k is an integer such that 0 < k < |(p — 5)/10], then

) = 4" — Lonyf. (1)

-1 p—1 p—5 p—1
Pl g 9P 5P —5.
p> 5 k=227 5L 10 J >3 10

because (p — 5)/10 is not an integer. Since, as is known,

~1)i-t
l(?)E(—l).—(modp) forj=1,...,p—1,
VAW J

relation (1) with n = (p — 1)/2 gives

Lip—5)/10] (—1)P+1)/2+k 9p—1

> p-1)/2—5k_2 "

— L
? (mod p).
k=0 P

Multiplying by (—1)(P~1/2 and noting that
—5 e
(p—1)/2-5k—2 p—10k—5" 2k+1

gives the desired congruence.

(mod p)

Also solved by Paul Bruckman.

Please Send in Proposals!
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