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1, I N T R O D U C T I O N 

Let r > 0 be a fixed real number. In this paper we will study infinite series of the form: 

oo 

n = l (FnY 

where x G [0,Ir]. Ir signifies the sum of series (1) if en = 1 for all n G N. The convergence 
of the series (1), if x — -̂7*5 can be easily proved by the well-known Binet formula! Letting 
a = (1 + >/5)/2 and f3 = (1 - y/5)/2 we have 

Fn = (an-Pn)/VE. (2) 

Notice that 0 < a~r < 1 and that Binet's formula yields limn^00(Fn)r /arn = (\/5) . Thus 
applying the quotient-criterion for infinite series and geometric series proves the convergence 
of (1). For example: I\ = 3,359 Furthermore it is easy to see that 

Ir > Iri for r < r1, Ir —> oo for r —> 0 and Ir —>• 2 for r —> oo. (3) 

We begin with certain results due to J.L. Brown in [1] and P. Ribenboim in [8] dealing 
with the representation of real numbers in the form (1). In [1] J.L. Brown treated the case 
r = 1. In [8] P. Ribenboim proved that for every positive real number x there exists a unique 
integer m > 1 such that i"i/(m_i) < x < Ii/m and x is representable in the form (1) with 
r — 1/m, but x is not of the form (1) with r = l / (ra - 1) because x > h/{m-\){^oo = 0). 
Besides requiring r > 0 we do not make any other restrictions on r. 

The following theorem is basic for our considerations. 
T h e o r e m 1: (S. Kakeya, 1914) Let (An) be a sequence of positive real numbers, such that 
the series 

oo 

n = l 

is convergent with sum s and the inequalities 

Ai > A2 > A3 > • • • (5) 

are fulfilled. 
Then, each number x E [0, s] may be written in the form 

oo 

* = 5>" A " e»e{o,i} (6) 
n = l 
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if and only if 
An < An+i + An+2 + • • • (7) 

for all n e N. 
The "digits" en of the expansion may be determined recursively by the following algorithm: 

If n > 1 and if the digits et- of the expansion of x are already defined for all i <n, then we let 

n - l 

en = 1 if ^2 ei^i + An < x. (7a) 
t = l 

Otherwise, we set en = 0. 
Then, each expansion with x > 0 is infinite, i.e. there is an infinite set of integers n with 

en = 1. 
A proof of Theorem 1 can be found in [1], or in [7, exercise 131] or in [8]. 
For our purpose it is practical to introduce the following notion (see [6]): 

Definition: A sequence (An) satisfying conditions (4) and (5) of Theorem 1 is said to be 
interval-filling (relating to [0, s]) if every number x E [0, s] can be written in the form (6). 

2. T H E C A S E 0 < r < 1 

First we give an example of an application of 
T h e o r e m 1: Let An = l/F£ for all n E N, where r is a fixed number with 0 < r < 1. As we 
have mentioned above this sequence satisfies condition (4) of Theorem 1. (5) is also valid. For 
the proof of (7) we note first that 1/Fn < 2/Fn+1 is valid for all n E N. With 0 < r < 1 we 
get 

1 2 21/7" 1 2 
— < — < — which yields < ' J (Fny (Fn+1y 

Prom this we obtain by mathematical induction: 

i/(Fny - i/(Fn+ky < i/(Fn+1y + i/(Fn+2y + . •. + i/(Fn+ky 

for all fe > 1. 
Now let h —> oo. The limits of the two sides in the preceding inequality exist and we 

obtain 

i ^ i 
< E (FnY -^{Fn+kY' 

Condition (7) is thus established. The application of Theorem 1 immediately yields, that each 
real number x with 0 < x < Ir, where 0 < r < 1, has (at least) one expansion of the form (1). 
In other words: ( l / i ^ ) ^ L i i s interval-filling relating to [0,/ r]-

This statement can be extended considerably. 
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T h e o r e m 2: For each real number x with 0 < x < Ir and fixed r with 0 < r < 1 the set Cx, 
which consists of all different expansions for x of the form (1), is uncountable; it has cardinality 
c (the power of the continuum). 

The proof is based on an idea which is used in [2] and [3] considering the representation 
of the real number x in the form 

oo 

71 = 1 

with non-integral base q. Such an expansion is not unique in general. 
Our central point is the construction of a subsequence of ( l / ( i ?

n ) r ) ^_ 1 which also satisfies 
the conditions of Theorem 1. 

Before we give a proof of Theorem 2 we need some results on sums of Fibonacci reciprocals. 
T h e o r e m 3: (Jensen's inequality see [5]). Let 0 < r < 1 and let A be a finite or infinite 
subset of N. Then, we claim that 

£1/*i<(E1/(*,or 

i£A \i€A 

1/r 

Proof: Let us let a = (J2i€A l/(Fi)r)1/r. Thus, £ i e A l/(Fia)r = 1 and we get l/(Fia) < 
1 for all » E A. 1 > r yields l / (F;a) < l / (F ;a ) r for i e A. Therefore, 

j>/(fla)<£l/(W = l. 
i£A i£A 

Multiply by a. From the defintion of a and because of the last inequality we obtain the 
assertion. • 
T h e o r e m 4: Let 0 < r < 1. Let z denote a positive integer. 

(i) If z = 2k + l, then 

1 1 1 
< T ^ ^ + 

(ii) If z — 2k, then 

(Fzy (Fz+1y (Fz+2y 

1 1 1 1 
< 7^ T- + 71^ w + 

(iii) If z = 2k + l, then 

(Fzy ^ (Fz+1y (Fz+2y (Fz+3y 

1 1 1 
(Fzy " (Fz+2y ^ (Fz+3y (Fz+n{z)y 

with an integer n(z) dependent on the odd integer z, with n(z) < n(z-\-2) and n(2k+1) 
oo, as k —> oo. 
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(iv) If z = 2k, then 

1 1 1 1 
< TT; r~ + 7^ TZ + T^ w + • " + (Fzy ^ (Fz+1y (Fz+3y (Fz+4y (Fz+ky 

with k = 7 if z = 2 and k = 5 if z > 4. 
Proof: First we treat the case r = 1. 

(i) z = 2& + 1. The assertion is equivalent to Fz+1Fz+2 < Fz (Fz+i -f Fz+2) or 
Fz+1 (Fz+2 ~ Fz) < FzFz+2 or (Fz+1)2 < FzFz+2. Then, the well-known formula 
Fl - F n + 1 F n _ ! = ( - l ) n + 1 with n = z + 1 yields ( F , + 1 ) 2 = F , + 2 F , - 1 < FZ+2FZ. 
The proof of (i) for r = 1 is complete. 

(ii) z = 2k. Using (i), we get 

1 1 1 , , 
< — h •—— and then Fz+1 Fz+2 -Tz+3 

1 2 1 1 1 
Fz Fz+i Fz+i Fz+2 Fz+3 

(iii) z = 2fc + 1. For the purpose of abbreviation let 5 = f3/a = (y/5 - 3) '/2. Then, \S\ < 1. 
Using the Binet's formula we have 

Fz Fz Fz az-Pz az-fiz 

•z+2 Fz+3 Fz+n az+2 - pz+2 az+n - j3z+n 

_ - a - 2 ( l + m , , Q - n (1 + 1*1') 
1 + |£|*+2 l T | * h + n 

( i + m a - ^ r - 1 ) ( N o t e o 2 ( 1 . ( 1 / a ) ) = 1() 
> (1 + \8\z+2)a2(l - (1/a)) l l l ' " j 

(i + H*+2) 

Because | j | < 1 it follows that (1 + \5\z)/(l + \S\Z+2) > 1. 
Further, we notice that the increasing sequence ((1 — (l/of)71-1) has limit 1, as n -> oo. 

Therefore, it follows that the inequality 

(i + lTO-W1), , 
( 1 + 1 ^ + 2 ) 
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is valid for all sufficient large values of n E N. We denote the minimum of these values by 
n(z). Thus, we have 

Fz Fz Fz 

fz+2 ^ z + 3 J"z+n 

for all n > n(z). This is equivalent to (iii). 
The assertions n(z) < n(z + 2) and n(2k + 1) -> oo as k -» oo are easily proved. 

(iv) Let z — 2k. If z = 2 a direct computation leads to the assertion. We observe that for 
z > 4, the desired result is equivalent to 

^ ± 1 f- i -+ J - + J-") > i. 

Applying (i) with the odd integer 2 + 3 to the parenthesis on the left hand side, we obtain 

FZFZ+1 ( 1 + _2_ + _M >
 2F*F*+i 

Fz-i \Fz+3 Fz+4 Fz+sJ Fz_iFz+z 

Therefore, it is enough to establish that 2FzFz+i > Fz-iFz+3. For that purpose we begin 
with the well-known equation Fn+2Fn-i — FnFn+i — (—l)n (n E N). We obtain Fz-2Fz+i — 
FZ-XFZ = - 1 and from this 2Fz+1Fz-2 > FZ^XFZ. It follows step-by-step that 2Fz+i(Fz -
Fz-i) > Fz-iFz\ 2FZFZ+! > 2Fz„lFz+1 + FZ^FZ = Fz_iF*+3. We have therefore proved all 
parts of the theorem for r = 1. 

The general assertions for 0 < r < 1 are immediate consequences of Theorem 3. For 
instance: In the event of (i) the subset A is as follows: A = {z + 1, z + 2}. Then, we have by 
Theorem 3 

1 1 1 / 1 1 x 1 / r 

< + - < 7-= r- + 
Fz Fz+1 F z + 2 " V ( ^ + i ) r (Fz+2) 

Raising both sides to the rth power we have (i). 
All other cases follow in a similar way. Therefore, the proof of Theorem 4 is complete. 

• 
Before we continue with the proof of Theorem 2 let us give a simple application of Theorem 

4. 
r will be chosen with 0 < r < 1. Assume that we have a representation of x E [0, Jr] in 

the form (1) with the interval-filling sequence (I/(Fn)T)(^L1 on the basis of the algorithm (7a). 
T h e o r e m 5: Consider the sequence (en(x))^L1 of digits. A chain of consecutive digits "1" 
following a digit "0" has at most length two. 

Proof: Let en(x) = 0, en+i(a;) = l,en+2(x) = 1? • •• ,en+fcW = 1 be a chain of the 
described kind. Then, we obtain by algorithm (7a) 

n—1 i 1 n—1 1 
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Thus, 

1 1 1 

We now appeal to Theorem 4. It implies that k must be equal to 1 (at most equal to 2), if 
n is an odd (even) number since the assumption k > 2 (k > 3) leads to a contradiction with 
Theorem 4(i) or (ii). 

The proof is complete. • 
P r o o f of T h e o r e m 2: We choose a sequence of even integers (ZJ)<JL1 = (2kj)fL1 with 

Zj+i — Zj > max{9? n(zj — 1)] for all j E N. The first member z\ will be chosen (later) to be 
sufficiently large. Let M = N — {ZJ}J±V Consider the set {l/(Fm)r :m £ M} as anon 
increasing sequence (An)^_1 of numbers: \\ — lj{F\f ^\2 = l / ( F 2 ) r

3 . . . , \ZY~\ — 
l/(FZl.1Y,XZl = l/(FZl+1r,XZl+1 = l/(FZl+2y,.... 

Next? we shall show that Theorem 1 is applicable to the sequence (An)^L1? in particular 
the validity of (6). 

First we determine for each m G M the unique number j E N such that the condition 
Zj-i + 1 < m < Zj — 1 is satisfied (z0 = 0). Then3 we obtain with the help of Theorem 4 

zL/ (j?^ > 7^ 7̂ + 7^ w + 7 ^ xT > 
n^m(Fny (Fm+1y (Fm+2y (Fm+3y (Fmy> 

n G M if Zj-i + 1 < m < Zj — 4 in view of Theorem 4(i), (ii); 

^ 1 1 1 1 
n>m(Fny (Fm+1y (Fm+2y (Fmy> 

n G M if m = Zj — 3 in view of Theorem 4(i); 

y-* 1 1 
2^> TFLV > TPZ~, 

1 

n>m 
(Fny (Fm+1y (Fm+3y (Fm+ky' ( F m r 

n e M if m = Zj — 2 in view of Theorem 4(iv); and 

y ^ 1 1 1 1 1 
hn ^ ) r > (F™+2)r + ( F - + 3 ) r + " ' + (Fm+n(m)y > (Fmy' 

n e M ii rn = Zj — 1 in view of Theorem 4(iii). 
So? we obtain for each m G M : l/(Fm)T < £ n > m j T l 6 M

 1/(Fn)T? t b a t is we proved that 
condition (7) of Theorem 1 is satisfied. It is clear that (4) and (5) are valid. 

Let 0 < x < J r . We choose z\ so that the following conditions are satisfied simultaneously: 
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This is possible, because l i m ^ - ^ Y,n>Zl
 l/(Fn)T = 0. Let A be any subset of the set {ZJ}^. 

We define now the 0-1-sequence (6j)(*L1 in the following way: Sj = 1, if Zj € A, Sj = 05 if 
Zj ^ A . Consider the number 

C O r. 

We obtain from the above conditions (*) that 

oo i oo -

It follows from this that 0 < y < Y^Li ^n-
Nov/ the key point is the application of Theorem 1. For each real number in the interval 

[0, J2^Li ^n] there is a series of the form 

CO 

7 1 = 1 

With a view to the definition of y we receive the following representation: 

CO CO -

n = l j=l KPzJ} 

We note that a Fibonacci reciprocal contained in the second sum cannot occur in the first, 
which implies that the representation of x is dependent on the sequence (Sj), Two different 
sequence (Sj) and (Sj) lead to different representations of x. It is well-known that the set of 
all 0-1-sequences has cardinality c (the power of the continuum). Therefore, the set Cx of 
different representations of re in the form (1) has at least cardinality c. Because the cardinality 
of the set of 0-1-sequences equals the cardinality of the continuum, the set Cx has cardinality 
at most c. 

Theorem 2 is thus established. D 
Next, we will draw a comparison between our Theorem 2 and results in [2] and [3], which 

are due to P. Erdos, M. Horvath, I. Joo and V. Komornik. 
First we make the observation that by Binet3s formula l i m n - ^ Fn/an — l/y/5, that is Fn 

and an are "almost" proportional as n —> oo. To simplify matters we assume Fn ~ an. Then 
it follows that (Fn)r ~ anr = qn with q = ar and the interval 0 < r < 1 corresponds to the 
interval 1 < q < a. 

Let q G ( l , a ) . It was proven in [2] (see Theorem 3 in [2]) that for every x G (0,1/q - 1) 
there are c different expansions of the form 

CO 

* = E S e„e{o,i}. (8) 
n = l q 

2003] 447 



INTERVAL-FILLING SEQUENCES INVOLVING RECIPROCAL FIBONACCI NUMBERS 

We can say that this result is analogous to our Theorem 2, if we take into consideration the 
above-mentioned remark on (Fn)r and qn. 

On the other hand it was shown in [3] (see the proof of Theorem 1 in [3]) that, if we 
assume in (8) x = 1 and q = a, there exist precisely countably many expansions of the form 
(8). It is surprising that we have different cardinal numbers relating the set of representations 
for x = 1 and r — 1 according to (1) and the set of representation for x — 1 and q — a 
according to (8). 

3 . T H E C A S E r > 1 

We shall prove two further theorems regarding expansions of the form (1). 
T h e o r e m 6: Let r satisfy 1 < r < log 2/ log a. Then, there is an even integer ra(r) such that 
the sequence ( l / ( ^n ) r )^L m ( r ) - i *s interval-filling. 

T h e o r e m 7: Let r satisfy r > log 2/log a. Then, there is no integer m G N such that 
(l/(Fn)r)™ is an interval-filling sequence. 

P roo f of T h e o r e m 6: In view of the equation (3/a = —1/a2 and with the help of Binet's 
formula it easily follows that 

1 + (_i)n+2 -2n-2 
Fn+1/Fn = aE(n) where E(n) = ^ {_[)n+1^2n • 

If 1 < r < log 2/log a holds, then 2 > 21/r > a. As soon as n is an odd integer we get 
E(n) < 1. Thus, it follows that Fn+i/Fn < 21fr for an odd integer n. On the other hand, we 
obtain from the definition of E(n) that for even integers the following statements are valid: 
E(n) > ljE(n) > E(n-\- 2),limn_»00 E(n) = 1. Hence, there is a smallest even integer m(r) 
such that 1 < E(m(r)) < 21'T/a. Therefore, Fn+1/Fn = aE(n) < aE(m(r)) < 21/r for each 
even n > m(r). Summarizing we obtain Fn+i/Fn < 21/r or (Fn+i)r/(Fn)r < 2 for all integers 
n > m(r) — 1. This implies that Theorem 1 is applicable since the sequence ( l / ( F n ) r ) with 
n > rn(r) — 1 meets all the requirements of the theorem, in particular condition (7). Theorem 
6 is thus established. • 

P r o o f of T h e o r e m 7: Let r > log 2/log a, equivalent to ar > 2. First we shall prove 
that, for all even integers n £ N, we have 

i/(Fny > i/(Fn+1y + 2/(Fn+2y. (10) 

We again use the defintion of E(n) in the proof of Theorem 6. We receive from (10) the 
equivalent inequality 

ar(E(n)E(n + l ) ) r > (E(n + l ) ) r + 2/ar (n even). (11) 

On the other side, we obtain for even n G Ni 

E(n)E(n 4-1) - 1 + ^ ( ^ > 1 and E(n + 1) < 1. 
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The last two inequalities and ar > 2 yield that (11) is valid for all even n £ N, because 

ar(E(n)E(n + l ) ) r > 2((E(n)E(n + l ) ) r > 2 > (E(n + l ) ) r + 1 > (E(n + l ) ) r + 2/ar. 

Thus, the equivalent statement (10) follows, from which we obtain by mathematical induction: 

> J2JF—Y (12) (Fny (Fn+2ky ^ (Fn+i) 

for all k > 1 and even n. 
Then, it follows from (12) as k -> oo: 

1 °° 1 
( ^ E ( ^ ( » €* , » even). (13) 

Now, suppose that in (13) for two consecutive even numbers n — v and n = v + 2 the 
equals sign is valid. 

Then, a simple calculation shows that we have a contradiction to (10): 

1 1 2 

P^~P^+(I^3 

i.e. from two successive inequalities (13) there is at most one equality. Next, consider the set 

A(r) - {n\n G 2N, l / ( F n ) r > £ l/(Fn+i)r}. 
1 = 1 

Prom the preceding argument it is clear that A(r) is an infinite subset of N, such that 
condition (7) of Theorem 1 is not true for n G A(r). We conclude that there is no integer 
m E N, such that the sequence ( l / (F n ) r ) £L m is interval-filling. • 
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