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1. INTRODUCTION

Let z be any nonzero real number. The n by n generalized Fibonacci matriz of the first
kind, Fn|z] — [fij], is defined as

Fi '+1$i_j 7/-.7+ 1> 07
fij:{ Y (1)

0 i—j+1<0.
We define the n by n generalized Fibonacci matriz of the second kind, R, [z] = [ri;], as

Fijpziti™2 4—j+12>0,
Tij =

2
0 i—j+1<0. @)

Note that F,[1] = Ry[1] and F,[1] is called the Fibonacci matrix (see [3]).
The n by n generalized symmetric Fibonacci matriz, Op[z] = [gi;], is defined as

= 0 = { Yio FRz¥r i,
i — 441 — . .
? Gij28® + qijax i+ 1<7,

where g1,0 = 0. Then we know that for j > 1, q1; = ¢;1 = Fizi=1 and g9 = gjo = Fjq39.
9, [1] is called the symmetric Fibonacci matrix (see [3]). For example,

r1 0 0 0 O 1 0 0 0 O
T 1 0 0 0 T z? 0 0 0O
Fslz)= 222 =z 1 0 0}, Rslr]= |22 2 =z* 0 O
3z 222 £ 1 0 3z 2z% % 28 O
| 52% 323 222 z 1 5¢* 3z% 228 27 28
! z 222 328 5zt
222 3z Bzt 8z
Os[z] = | 222 323 6z* 9z5 1528
3z° 5z* 9z° 15z% 2447
| 50% 82% 15z% 24z7 40z8
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Let D = {x = (z1,Z2,...,Zn) € R" : 1 > T2 > -+ > T}, where R is the set of real
numbers. For ¢, y € D, ¢ < y if Zf:ﬂ"i < Zfﬂyi, k=1,2,...,n and if £ = n then
equality holds. When & < y, @ is said to be majorized by y, or y is said to malorize x. The
condition for majorization can be rewritten as follows: for z,y € D,z <y if ), Tn_i >
Zf:o Yn—i, k=0,1,...,n—2 and if K = n — 1 then equality holds.

The following is an interesting simple fact.

(Z,...,T) < (T1,-..,Zn),

where T = —*:—‘ﬁ More interesting facts about majorization can be found in [4].

An n x n matrix P = [p;;] is doubly stochastic if p;; > 0 for 4,5 =1,2,...,n,> 1 pij =
Lj=12...,n,and 35 pij = 1,i = 1,2,...,n. In 1929, Hardy, Littlewood and Polya
proved that a necessary and sufficient condition that & < y is that there exist a doubly
stochastic matrix P such that = yP.

We know both the eigenvalues and the main diagonal elements of a real symmetric ma-
trix, are real numbers. The precise relationship between the main diagonal elements and the
eigenvalues is given by the notion of majorization as follows: the vector of eigenvalues of a
symmetric matrix majorize the main diagonal elements of the matrix (see [2]).

In [1] and [5], the authors gave factorizations of the Pascal matrix and generalized Pascal
matrix. In [3],the authors gave factorizations of the Fibonacci matrix F,[1] and discussed the
Cholesky factorization and the eigenvalues of the symmetric Fibonacci matrix Q,[1].

In this paper, we consider factorizations of the generalized Fibonacci matrices of the first
kind and the second kind, and consider the Cholesky factorization of the generalized symmetric
Fibonacci matrix. Also, we consider the eigenvalues of Q,[z].

2. FACTORIZATIONS

In this section, we discuss factorizations of Fp[z], Rnp[z] and Qy[z] for any nonzero real
number z. .

Let I, be the identity matrix of order n. We define the matrices Sy[z], Fy[z] and Gi[z]
by

1 00 1 00
Solz]=|z 1 0f,S-fz]=]|0 1 0O},
z2 0 1 0 z 1
and Si[z] = So[z]® Tk, k=1,2,..., Falz] = (1)@ Fn-s[a], Gila] = I, Cala] = In_s®S_1[a],
and, for k > 3, Gilz] = In—r ® Sk—3|z].
In [3], the authors gave a factorization of the Fibonacci matrix F,[1] as follows:
Theorem 2.1: For n > 1 a positive integer,

Fall] = G1[1)Ga[1]. .. Gal1).

Now, we consider a factorization of the generalized Fibonacci matrix of the first kind.
From the definition of the matrix product and a familiar Fibonacci sequence, we have the
following lemma.
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Lemma 2.2: For k > 3, .
fk[a;]Sk_g[:c] = fk[m]
Recall that Gp[z] = Sp_s[z], Gi[z] = I, and Ga[z] = I,_3 ® S_;[z]. As an immediate
consequence of lemma 2.2, we have the following theorem.

Theorem 2.3: The n by n generalized Fibonacci matrix of the first kind, F,[z], can be
factorized by Gg[z]’s as follows.

We consider another factorization of F,[x]. Then n by n matrix Cp[z] = [ci;] is defined
as:
i . F 0 0
i 5=
Fe™ g=1, ‘ Pz 1 0
cij=14 1 =7, ie., Chlz] = :
0 otherwise, Fozn-1 0 1

The next theorem follows, by a simple calculation.
Theorem 2.4: For n > 2,

fn[(lf] == Cn[$](11 - @C’n_l[z])(lz &) Cn_Q[.’E]) . (In_2 (&) 02 [.’L‘])

Also we can easily find the inverse of the generalized Fibonacci matrix of the first kind. We
know that

and S[z]~! = So[z]~! @ Ix. Define Hi[z] = Gilz]™'. Then Hi[z] = G1[z]™! = I, Halz] =

Golz) 1 =Ih—3® S_1lz] ' =12 ® [_lx (1)] and Hy[z] = Sp—3[z]~!. Also, we know that
2 0 ... 0
1 —le? 1 1 -1
Cnlz]™" = : .. .| and (Ix ® Coglz]) ™" = I © Cri[z] ™.
—F,z" 1 0 ... 1

So, the following corollary holds.
Corollary 2.5: For n > 2,
Fulz]™! = Golz] 'Groifz] ™. .. Galz] 'G[z] !
= Hn[(II]Hn_l[z‘] .. HQ[JI]HI[(E]
= (In—z ) 02[13]_1) . (Il @ C’n_l[z]_l)Cn [(L‘]—l.
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From corollary 2.5, we have

1 0 0 0 07
—z 1 0 0 0
-1 —z? -z 1 0 0
Falel =1 0 —22 -z 1 0 ®3)
L 0 0 —-z2 -z 1.

For a factorization of the generalized Fibonacci matrix of the second kind, R,[z], we

define the matrices My[z], Rn[z] and Ni[z] by

1 0 O 1 0 O
Mo[z)= |z z* 0|, M_4z]={0 1 0|,
1 0 z? 0 = 22

and Mg[z] = Mo[z] ® 221k, k = 1,2,...,Ry[z] = [1] ® Ru-1lz], N1[z] = I, No[z]) = I,—3 ®
M_i[z], and, for k > 3, Ni[z] = I,— ® My_3[z]. Then we have the following lemma.
Lemma 2.6: For k > 3, o

’R,k[:z] = Rk[z]Mk_g[a)].

Proof: For k = 3, we have R3[z]My[z] = Ra[z]. Let k > 3. From the definition of the
matrix product and a familiar Fibonacci sequence, the conclusion follows. [
As an immediate consequence of lemma 2.6, we have the following theorem.

Theorem 2.7: The n by n generalized Fibonacci matrix of the second kind, R,[z], can be
factorized by Ni’s as follows.

Rnlz] = Ni[z]Naz] ... Nyp[z].

Now, we consider another factorization of R,[z]. The n by n matrix Ly[z] = [I;;] is
defined as:

L F 0 ... 0
Ba™ =1, R
lij = z2 1=457>2 ie., Lp[z] =
0 otherwise, Favl 0 ... z°

From the definition of the matrix L,[z], the following theorem holds.
Theorem 2.8: For n > 2,

Ronle]) = Lo [2](Iy ® L_1[z])) (T2 ® Lu_s[z]) . . . (In2 ® La[z]).
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We can easily find the inverse of the generalized Fibonacci matrix of the second kind. We
know that

. 1 0 0 1 0 0
My z] = —; = 0 , MZlz]=]0 1 o],
= 0 & 0 -2 =

and for £ > 1,

Define Uy[z] = N; '[z]. Then Ui[z] = I, Uslz] = Ny [z] = In_3 & M_}[z], and, for k > 3
Ui[z] = Ny '[z] = Li—, ® M ';[z]. Also, we know that

7

F 0 0
- 0
—F; 0 % 0
Lylz]™! =
nle] “Fz 0 0
| —Fpz™3 0 ... 0 0 %]

and (I ® Ly—k[z])~! = It ® L,_i[z]~1. Then we have the following corollary.
Corollary 2.9: For n > 2,

Ralz] ™! = Up[x)Un_1[z] . .. Us[z]
= (In_2® La[z]™Y) ... (I1 ® Ly_1[z] V) Lp[z] L.

From corollary 2.9, we have

1 0 0 0 0
—1 L 0 0 0
_i1 _;i_ 1 0 0
—1 2 3 zt
Role =10 -%L -% X% 0 (4)
| 0 0 —1.21}—3 —z2r}—-3 IZ?}—-? _

Note that F,[1]7 = R,[1]71.
Now, we consider a factorization of Qy[z]. In [3], the authors gave the Cholesky factor-
ization of the symmetric Fibonacci matrix Qn[1] as follows:

Theorem 2.10: For n > 1 a positive integer,
0.11) = Fo[l]Fa[1)7.

From the definition of @,[z], we derive the following lemma.
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Lemma 2.11: For n > 1 a positive integer, let Qn[z] = [gi;]. Then
(i) For j >3, g3j = F4(Fj_3 + Fj_ng)wj+1.
(ii) For j >4, g4 = F4(Fj...4 + Fj_4F3 + F]‘_3F5).’L‘j+2.
(i) For j > 5, g5 = [Fju5F4(1 + F5 + F5) + Fj_4F5F5]a;j+3.
(iv) For j > i@ > 6, qij = [Fj_iFs(1 + F3 + F5) + Fj_;FsFs + .-+ + F;_;Fi_,F; +
Fj_iv1FFipy)oiti=2,

Proof: We know that gz 3 = S o_, F2a* = (F? 4 F} + F2)z* = F3Fuz*, and hence
3,3 = F4F3.’l!4 = F4(F0 + F1F3)$4 for Fy = 0. By induction, qs; = F4(Fj_3 + Fj_2F3).’L'j+1 for
j > 3. Thus, we have (i).

We know that g13 = ¢3,1 = F32° and g23 = g3 2 = Fyz3. Also, we know that ga1 =
qia = Fuz® quo = qaa = Fsz* and gs,a = qaz = Fu(F1 + FyF3)z® by (i). By induction, we
have qu; = Fy(Fj—4 + Fj_4Fs + Fj_3F5)z? 2 for j > 4. Thus, (ii) holds.

By induction, (iii) and (iv) also hold. O

Now, we have the following theorem.

2

Theorem 2.12: For n > 1 a positive integer
UnlzlUn-1lz] ... U1]z]Qnlz] = Fn [x]T
and the Cholesky factorization of Q,[z] is given by
On[2] = Ru[e]Falz]".

Proof: By corollary 2.9, U, [z]Uy,—1[%] ... Ui[z] = Ra[z]™1. So, if we have R, [z]"1Q,[z] =
Folz]T then the theorem holds.

Note that Qn[z] is a symmetric matrix. Let Alz] = [ai;] = Ra[z]71Qu[z]. By the
definition of Qy,[z] and (4), a;; =0for j+1 < 3.

Now we consider the case j > 4. By (4) and lemma 2.11, we know that a;; = f;; for ¢ <5.
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We consider j > % > 6. Then, by (4), we have

1 1 1
%ij = 7 aima¥i-25 T =310 T 5img %
1
- xzi_—2[Fj—iF4(1 + F3+ F5)+ Fj_1FsFg+-- -+ Fj_1F;_1 F;

+ Fj_it1F,Fiyq)at 2

1
T 23 [Fi—it1Fs(1+ F3+ F5) + Fj_i 1 FsFs + - - +

Fj_is1FioF; 1+ Fj_j o F; 1 F))z*ti—3

1
T 4 (Fi—itoFa(l+ F3 + F5) + Fj_iyoFsFs + -+ - +

Fj_itoFi 3F; o+ Fj_i13F; oF;_q|z*ti~*

= [(Fj—i — Fj—i+1— Fj_iy2) Fa(l1 + F3 + F5) + (Fj—i — Fj—ia
— Fj_ip2)FsFe+ -+ (Fj—i — Fj—iy1 — Fj_iy2)Fi3F;_»
+ (Fj—i — Fj_iz1— Fj_ips)F;_oF;
+ (Fj—i — Fj—iv2)Fio1 Fy + Fj_j 11 FyFipq |2 %

Since Fj—; — Fj_i41 — Fj_iy2 = —2F;_j11, Fj—; — Fj_i41 — Fj_i43 = —3Fj_i41, and Fj_; —
Fj_iyo = —Fj_;11, we have

aij = Fj_iy1[~2Fs — 2(F3Fy + FuFs + - -+ + Fi_3F;_1) — F;_3F;_y — F;_1 F; + F;Fiq)2’ ™.
Since Fy = 3 and

Foy 1+ FFi_,1-1
2 bl

FiFo+ FyFs+ -+ F,_ 1 F; =

we have

i Fi 1Fi_1y-1—1

—  FisF;y —Fi  F, 4+ F,Fi)Fj_jqxi ™t
=(1=2F_1F; g — Foi_3— F_1F; + FiF; 1) Fj_i 177
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Since F;.1 = F; + F;_; and Fi2-|-1 + Ft? = Fyiy1,

aij=(1—2F;_1F;g— (FP+ F2,)+ F) + Fj_jpz’ ™

=Fj_ iz’
= fji-

Thus, A[z] = Fp[z]T for 1 <4, j < n.

Therefore, R,[z]™1Qx[z] = F.[z]T, i.e., the Cholesky factorization of Q,[z] is given by
Onlz] = Rulz)Fulz)T. O

For example,

1 z 2z% 3z% b5zt

222 3z® 5z* 82°
QOs[z] = | 222 3z® 6z 9x5 152°
33 5z* 9z° 1528 2427
5zt 8z5 1526 2427 40z8

= Rs[z] Fs[x)”
1 0 0 0 O 1 z 222 323 5z
z 2 0 0 O 0 1 z 222 328
=222 2z z* 0 O 00 1 =z 222
323 2z% 5 6 O 00 O 1 z
5z% 3z% 225 27 28 00 0 0 1
Since Q,[z]™! = (Fp[z]T) 1R, [z] 7, we have
[ 3 0 ~xl2 0 0 0 0 ]
o % 0 —or 0 0 0
S LN I 0
0 —-X 0 3 0 ~1 0
-1 % z% 8
0 0 - 0 s 0 i
0 25—6 0 ’TE‘ZI - 27{—3
T 1 i 1 $1
L 0 0 T gZn—4 T 2n-=3 wZn—2

From theorem 2.12, we have the following corollary.
Corollary 2.13: If k is an odd number, then

(FnFn—(k—l) - Fk)$2n~k_2 ifnis Odd,

(FuFo_g+ -+ Fop1 Fy)a®™ b2 = { ‘
e ) (FpFp_(f—1))z?mF=2 if n is even.
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If £ is an even number, then

(FnFy_(g—1))z®" k=2 if n is odd,

FnFn— +"'+F F :L'zn_k_z - {
( k k+1F1) (F,F, (k1) — Fk)z%“k—z if n is even.

3. EIGENVALUES OF Q,[x]

Let A be an m by n matrix. For index sets a C {1,2,...,m} and 8 C {1,2,...,n}, we
denote the submatrix that lies in the rows of A indexed by a and the columns indexed by B
as A(a, ). If m = n and @ = f, the submatrix A(a,«) is a principal submatrix of A and is
abbreviated A(a). We denote by A; the leading principal submatrix of A determined by the
first 4 rows and columns, 4; = A({1,2,...,i}),2=2,...,n. Note that if A is Hermitian, so is
each A;, and therefore each A; has a real determinant.

We know that if A is positive definite, then all principal minors of A are positive, and, in
fact, the converse is valid when A is Hermitian. However, in [2], we have the following stronger
result: If A is an n» by n Hermitian matrix, then A is positive definite if and only if det A; > 0

for i =1,2,...,n. We know that Q,[z] is a Hermitian matrix, det Ry[z] = z*(™~1 and det
Fulz] = 1 for n > 2. By theorem 2.12, we have det Q,[z] = det(R,[z]Fp[x]T) = z"(*~D.
Since z is a nonzero real, we have det Q;[z] > 0,7 = 2,3,...,n. Thus, the matrix Q,[z] is a

positive definite matrix, and hence the eigenvalues of Q,[z] are all positive.
Let Aq[z], A2[z], ..., An[z] be the eigenvalues of Qn[z]. Since

i

2, 2i-2 _ 2i—2

gii = § Fizx = Fi Fiz© 7,
k=1

we have
(Froy1Foz® 2 FoFy a4 FaFox? FoFy) < (A2, A2lz), - - -, dula])-
Let sp[z] = 30, Ailz]. Then,
$p[#] = Fup1 Fpa®™ 2 4 FyFy 12 oo 4 FyFox® + FyFy.
Thus, A1{1], A2[1], ..., An[1] are the eigenvalues of @[1] and
(Fp1 Fo, FuFpoq, ..., FsFy, Fo Fy) < (Aq[1], A2[1], ..., Ag[1]).
We know the interesting combinatorial property

i (n;z) P,

§=0
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In [3], the authors gave the following result:

n (n—i))2 . .
A[1] 4+ A1)+ -+ Ap[l] = { (Zi=o ( i ))2 —1 ifnis odd,
(Z?:o (n:t)) if n is even.

Also, we have

(7[,1—] 7%1‘]) < (alt], Aaft; -5 Anf1]).

So, we have A,[1] < iln[ﬂ < A1[1], ie., if n is an odd number then

nAall] < (an (";’))2 ~1< a1,

=0

if » is an even number then

nAdl1] < (}: (" ‘)) < il

1=0

Suppose that z > 1 and (Ai[z], A2[z], ..., An[z]) € D. Then, from (5), we have

3 3 3 3 2 1 < 1 1 1 6
1727 g4 12n—6 p2n—4) 2n—2 Mz Aoilz) 7 Ma]) (6)

Thus, there exists a doubly stochastic matrix 7" = [tij] such that

3 3 3 3 2 1
’ F’ ;Z’ T p2n—67 p2n—47 p2n-2

tin tiz ... tin
__( 1 1 1 ) t21 fo2 ... fon
Anl2]” An—1fz]” 7 Aa[z] S SR
th1 thn2 ... tpn
So, we have
t11 t21 tn1
3= + +oet —,
Anlz]  Ap—i[z] A1z
ie.,
t11 t21 tn1
1= ceog
el T BDaad T 3]
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Since the matrix T is a doubly stochastic matrix,
t11 +tg1 + -+ tp = 1.

Lemma 3.1: Suppose that > 1. Foreach¢=1,2,...,n,n > 2,

3A;i[z]

n—1

bo—(i-1),1 <

Proof: Suppose that t,_(;_1)1 > M,i =1,2,...,n. Then

n—1

3 3 3\,
bt b g > ole] Salel L SAle]
n—1 n—1 n—1

= ni 1(,\1[3,‘] —I—z\z[.’b‘] + 4 Anz]).

Since z > 1 and
)\1{.’1,‘] + AQ[(II] + o+ An[l‘] = Fn+1FnIE2ﬂ_2 + -4 F3F2.’E2 + FyFy > n,
this yields a contradiction.

Therefore, t,_(i—1)1 < 3hilz] L,2,...,n. O

=~ -1

In [3], the authors found properties of the eigenvalues of Q,[1] and proved the following
result.

Theorem 3.2: Let 7 = s,[1] — (n — 1). For (A{[1], A2[1],...,As[1]) € D,

(r,1,1,...,1) < (A[1], A1), .. o, AR[1)).

Let o[z] = s[z] — %5*. Then, we have (0[z],3,3,...,3) € D and s,[z] = ofz] + 251 =
™ _Ai[z]. In the next theorem, we have another majorization of the eigenvalues of Q,[z].
1=1 g

Theorem 3.3: Suppose that z > 1. For (A1[z], A2[z], ..., An[z]) € D, we have

(ﬂ%%%“w%><0¢$th”MM)

Proof: Let P = [p;;] be an n by n matrix as follows:

Pui1 P12 ... P12

P21 P22 ... P22
P= . . . . s

Pni Pn2 --- Pn2
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where p;; = 5%\%&])—1 and p;1 =1 — (n — 1)ps2,2 = 1,2,...,n. Since T is doubly stochastic
and \;[z] > 0,pi2 > 0;1=1,2,...,n. By lemma 3.1, p;; >0,i=1,2,...,n. Then

tn,1 +t'n.—1,1 t1,1 _
3h[z]  3Az[z] 3 [z] ’

P12+ P2+ -+ Pu2=
pir+(m—1)pia=1—(n—1)pir+ (n—1)pia =1, and

pr1t+par+--+pm
=1 (0= D21~ (= Dzt -+ 1~ (1~ Dpus
=n—(n—1)(p12+pa2+-+pn2) = 1.

Thus, P is a doubly stochastic matrix. Furthermore,
_ Azt As[zlin-i An[]t11

A1[z]piz + Azlz]p2z + - - + Ap[x]pn2 = 3)1[z] 3Xz[z] Tt 3An[z]

)

ol =

1
= g(tn,1 Ftpga+ ) =

and

Ailz]p11 + Az[z]par + - -+ An[z]pn1
= >\1[(L'](1 - (n - 1)p12) 4+ 4 )\n[df](l — (n — 1)pn2)
= M[z] + Aafz] + -+ Anfz] — (0 — 1) (A1[z]p12 + Az[@]p2z + - - - + An[z]pn2)

1
= sp[z] — (n — 1).§(tn,1 +itp—1,1+ -+ 111)

=olz).

Thus, (o[z],1,3,...,3) = (A1lz], Aa[z], - . ., An[2]) P
Therefore,

(a[z]%%%) < Mz, Aafel, -, Anfz]). O

From (6), we have the following lemma.
Lemma 3.4: Suppose that £ > 1. For k=2,3,...,n,

1

3k=1) < Ailz).
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Proof: From (6), for k > 2,

1 i 1 by 1 < 1 " 2 3 3
Mz] T o[z Aplz] = g2n—2 " gen—t + z2n—6 Tt p2n—2k"
Since z > 1, we have
NN SN S P S +3=3(k-1)
Afz]  Asfz] A[z] B '
Thus,
1 1 1 1
<3k-1)— —+—+---—I~——> <3(k—1).
i <360~ (S o ) <960
Therefore, 35y < A[z]. O
In [3], the authors gave a bound for the eigenvalues of @, [1] as follows: fork =1,2,...,n—
2,
Mnikll] < (B +1) — ok ()
nokl = 3(n—1)

In the next theorem, we have a bound for the eigenvalues of Qy|z] that is better than (7).
Theorem 3.5: Suppose that z > 1. For k=2,3,...,n — 2,

E(T—ik_——ﬁ < Anglz] < % [k+2 —In (h——Z—_l)] '

In particular,
olz] < A[z] < 3" Hn - 1)lgn(n—1),

1 2n -3
< _ <
3(n—2) ~ An-1lz] < 3(n—-1)’
and
1 1
— < -.
3o SMlElsg

Proof: By theorem 3.3, we have o[z] < Ai[z] and An[z] < 3. By lemma 3.4, we have
§(_nl—_1—)- < An [.’E] Since

det Qn[z] = det(Ro[z]Falz]T) = 2D = Aq[z]Aalz] . .. An[z],
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we have, by lemma 3.4,

'3'"——1(;——1? < Nafz] .. Anla].

Thus, A\ [z] < 3"~ }(n —1)lz7(~1),
By lemma 3.4, 3—(;1:5 < An—ilz] and Ay [z] 4+ Ap—i1]z] <

1 2n—3

. So,

W

2 2
Lzl <2 Azl < 2 - = .
An-ile] S 3= Aalel S 3 - 50 Tgy T 3o
We know that
1 1 (1 1 1
a1 < Zdr < Sl T
2+ +n_/1 xdw_1+2+ +n~1’

lnn§1+%+---+ﬂ1T1. So, we have

&

D | b=
-+
+
3=
IN

n—1 mn-2

1 1 1 1 1
e —— > {1+ —
+ + +n_k_lun (+2+ +n—k—1>

>lnn—In(n—-k—-1)—1.
Since, by (8) and

An—k[z] < %l = (Anlz] + An—az] + - 4+ An—gt1[z]),

we have
An—klz] < % [k +2-In (#)} .
Therefore,
3—(n—_ik_—1) < Anoilz] < % [k+2—ln(;—_—%—_—1)] . O
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