1 LATTICE POINT SOLUTION OF THE GENERALIZED PROBLEM OF TERQUEM
AND AN EXTENSION OF FIBONACCI NUMBERS

C. A. CHURCH, Jr. and H. W. GOULD, W. Virginia University, Morgantown, W. Va.

In this paper we give a simplelattice point solution to a generalized per-
mutation problem of Terquem and develop some elementary results for the
extended Fibonacci numbers associated with the permutation problem.

The classical permutation problem of Terquem [12] has been stated by
Riordan [10, p. 17, ex. 15] in the following manner. Consider combinations
of n numbered things in natural (rising) order, with f(n,r) the number of r-
combinations with odd elements in odd position and even elements in even posi-
tions, or, what is equivalent, with f(n,r) the number of combinations with an
equal number of odd and even elements for r even and with the number of odd
elements one greater than the number of even for r odd.

It is easy to show that f(n,r) = f(a- 1, r - 1) + f{n - 2,r), with £(n, 0)
= 1, and explicitly

n-+r
(1) fo, 1) = [ 2 ] )
r
Moreover,
n
(@) f) = Zf(n, r) = fa - 1) + £ - 2)
=0

so that f(n) is an ordinary Fibonacci number with £(0) = 1 and £(1) = 2.

A detailed discussion of Terquem's problem is given by Netto [8, pp. 84-
87 ] and Thoralf Skolem [8, Pp- 313-314] has appendednotes on an extension of
the problem in which the even and odd question is replaced by the more generai
question of what happens when one uses a modulus m to determine the position

of an element in the permutation.
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More precisely, for a modulus m > 2, Skolem's generalization maybe
stated as follows. From among the first n natural numbers let f(n,r;m) de-
note the number of combinations in natural order of r of these numbers such

that the jth element in the combination is congruent to j modulo m. That is,

(3 flo,r;m) = N{aiaz-”ar: 1<a;<a < "< ar <n, a; = j (mod m)}

= 1

1<a<ag<---<ap<n
aj = j {mod m)

Consider the array in Fig. 1, where the last entry is r + km, with

- [25)
m

since r +km < n implies that the largest integral value of k cannot exceed

(n - r)/m. This array contains those, and only those, elements from among

1,2,°°¢,n which may appear in a combination., That is, the jth column con-

sists of all those elements <n in the same congruence class (mod m) which

may appear in the jth position.

A = (0,0

1 2 3 ——— r X
i+ 2+ m — 3+m —_—— r+m
1+2m 2+2m — 3+2m —— +2m
|
{

| | | | I
| | | | | |
1+km —-l—2+km _L—3+km_i —_ L_r+km_i

B = (I"S)

Y Fig, 1

From the lattice appended to the array in Fig, 1, we can systematically
write out the desired combinations, and evaluate f(n, r;m).

To get the desired result, let "a path from A to B' mean a path along
the vertical and horizontal segments of the lattice, always moving downward or
from left to right (we take the positive x~-axis to the right, the positive y-axis
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downward, thus agreeing with the informal way of writing down the permutations).
Each such path will generate a combination of the desired type, and conversely,
as follows: Starting at A each horizontal step picks up an entry and vertical
steps line up entries, Now, it is well known how many lattice paths there are
from a = {(0,0) to B = (r,s). MacMahon [7, Vol 1, p. 167] shows that this

number is precisely
r+ s
- .

In our case s = [(n - r)/m],, Thus we have at once that

4) fln, r;m) = r+[nr_nr] = [wﬁ{:—yﬁ]

IS r

as found by Skolem, Terquem's (1) follows when m = 2. To illustrate, we
consider some examples.

Example 1. Let n = 12, r = 3, m =4, Then the corresponding array

1 2 3
LS——&»L——G 7
‘——-—-9——3——-»10—15——»»11——»-

and the ten combinations are

is

1 2 3 i 6 7 5 6 7 9 10 11
1 2 7 1 6 11 5 6 11
i 2 11 1 10 11 5 10 11

and the particular combination 5, 10, 11 corresponds tothe path indicated by
arrows, Informally, one writes out the combinations by paths from the left
column to the right column, moving horizontally and/or diagonally. The clue
to a systematic count is found by superimposing the rectangular grid.
Example 2, Let n = 12, r = 4, m = 3. Thenthe corresponding array

is
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1 2 3 4
4 —pr—p=5 —Pt— 6 7
7 8 v o ) — ol 1) —p

and the fifteen combinations are

1 2 3 4 1 2 9 10 4 5 6 7
1 2 3 1 5 6 7 4 5 6 10
1 2 3 10 1 5 6 10 4 5 9 10
1 2 6 7 1 5 9 10 4 8 9 10
1 2 6 10 1 8 9 10 7 8 9 10

and the combination 4, 5, 9, 10 corresponds to the path indicated by arrows.

It is felt that our proof shows atruism of mathematics: one may often find
a simpler proof by embedding a given problem (Terquem!'s) in a more general
setting. The lattice point enumeration we used is well known, but may not be
apparent in the original problem because of its specialized form.

The extended Fibonacci numbers, in analogy to (2), are now defined by

n [n + (m - l)r]
() fm) = () = Z m ;
r=0 r

and it is not difficult to verify that they satisfy the recurrence relation

6) fp@ = fn - 1) + fm@ - m) .

For example, with m = 3 we have the sequence 1,2,3,4,6,9,13,19,28,---,
By well-known theorems in the theory of linear difference equations, if the dis-
tinct roots. of the equation

(7) t -t -1=20

are ty, ty,e+-ty> then there exist constants Cyp such that
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m
8 = E o
(®) f,0 Cty -
_ r=i
This generalizes the familiar formulas
n n
=2 - b = a4 R
Fnﬁa—b’ Ln~a+b,
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for the Fibonacci~Lucas numbers. The constants Cr may be determined from

the system of m linear equations in Cr:

0} _Z-Cr‘ci'=j+1, for j =0,1,2 cec, m -1 ,

For example, when m = 3, an approximate solution of the equation (7) is given

by

t; = 1.4655 ,
(10) t, = -0.23275 + 0,79255i ,
ty = -0,23275 - 0,79255i ,

where i%? = -1. Relations (5) through (9) are given by Skolem [8, 313-314].

When m = 3 the exact solution of (7) is given by

t1:A+B+%; s
1 A+B _A-B
(11) tp =5 - =5 *t=5— V3,
1 A+B A-B
h=g-"g -z V3o
where
A =3 V2L = 1.0237 approx.

o]
=

=
IQ
|

= 0,10854 approx.
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As a partial check on the values of the roots, we note the following theorem

from the theory of equations. ILet

m m m-1
(12) nt¢-t)=1t -t -z .
= !
Then
n
m m
(13) Zt?=z A, 1-m) ", n>1,
j=1 k=0
where

B a a + bk
Al b) = =k ( K )

This may be compared with the well-known [2, 3, 4, 5] expansion

Q0
(14) Xa = Z Ak(a,b)zk , with z = ,
k=9

which was actually found by Lagrange in his great memoir of 1770 (Vol. 24 of
Proc. of the Berlin Academy of Sciences) and which leads at once to the general
addition theorem discussed in [2, 3, 4, 5] as first noted by H. A. Rothe;
See relation {20), this paper.

m-1

For the equation t™ -t -z = 0, we define the power sums of the

roots tj by

m
(15) St) = ZtI; .
j—i
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Since thn_l +z = t'-fjn , we find that

m m m
Sh-1) +zSh - m) = Z {tr;—i + ztx;"m} = Z tnj—m<tr;l‘1 + z) = Z t?_mtljn,
j:i j::1 j::l

so that S(n) itself also satisfies a Fibonacci-type recurrence
(18) Sth) = S - 1) + zSm - m) .

Using the values z = 1, m = 3, the previous roots (10) yield the approximate
values (by log tables): S(1) = 1, S(2) = 0.9998, S(3) = 3.9995, and S{4) = 5
very nearly. This gives a partial check on (10),

In any event, we may consider the sequence defined by (13), (15), (16)as

a kind of extended Fibonacci sequence. In particular,

o
[n;l - (m - 1k

(17) S(n)-——z -I—l_—:_—(InI—lT—]jE(n Kk )Zk, n21,
k=0

satisfies (16) just as (5) satisfies (6). There are similarities and contrasts if
we compare (17) and (5). We also call attention to another such result given
recently by J, A, Raab [9], who found that the sequence defined by

[

_ n - rk\ _n-k(r+1)  k
(18) X, = Z K > a b
k=0
satisfies
(19) X = ax + bx o

n n-1i n-r-i
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Formula (13) is substantially that given by Arthur Cayley [1]. The classical
Lagrange inversion formula for series is inherent in all these fornulas, One
should also compare the Fibonacci-type relations here with the expansions
given in [5]. For m = 3, (17) gives the sequence 1,1,4,5,6,10,15,21, 31,

o0 0
°

We also call attention to the two well-known special cases

2

2
Z (n 1—( k) Zn-zkzk _ X -y
L X-.y

k=0

and
Z n-k} n 2n—zk--izk - X+ y
k n -k Xty

where x = 1+Vz +1, vy = 1-Vz + 1. F_and L occur when z = 4,

Relations (17) and (5) differ because the initial conditions differ. For
z = 1, {17) satisfies precisely the same recurrence as {(5). If the initial
values were the same then we would have found a formula for the permutation
problem not unlike (17). There are many papers (toc numerous to mention) in
which complicated binomial sums are found by lattice point enumerations. The
convolutions in[ 2, 3,4, 5] may mostly be found by such counting methods. We
also note the recent papers of Greenwood [6] and Stocks [1i] wherein the
Fibonacci numbers occur,

The convolution addition theorem [2, 3,4,5] of H. A. Rothe (1793)

n
(20) DA EDA  (eh) = A @+ b
k=0

valid for all real or complex a,b,c (being a polynomial identity in these), has

been derived several times by lattice point methods. We mention only a novel
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derivation by Lyness [13]. Relation (20) has been rediscovered dozens of times
since 1793, and its application in probability, graph theory, analysis, and the
enumeration of flexagons, etc,, shows that the theorem is very useful. Infact,
it is a natural source of binomial identities. We should like to raise the ques-
tionhere asto whether any analogous relation involving the generalized Terquem
coefficients (4) exists. It seems appropriate to study the generating function
defined by

. [a + (b - 1)n]
(21) T(x;a,b) = Z ( b ) .

n
n=0

for as general a and b as possible. If b is a natural number and a is an
integer >0, the series terminates with that term where n = a, as is evident

from the fact that a + (b - 1)n < bn for n > a and the fact that 1; = 0 for

k < n when n > 0, provided k 2 0, We also note that for arbitrary complex

a and |x[< 1
[e o]
- al .n _ a
Tksa,1) = Z <n> X a+x",
n=0
so that in this case we do have an addition theorem:
T(x;a,1)T(x;c,1) = T(xa+c,1) .
This, of course, corresponds to the case b = 0 in formula (20); the relation

implies the familiar Vandermonde convolution or addition theorem.

There does not seemtobe any especially simple closed sum forthe series

o o - i ([a + (g- 1)k]) ([c + (b —bI)(n - k)])

k n-k
k=0

which occurs in



68

LATTICE POINT SOLUTION OF THE GENERALIZED PROBLEM

OF TERQUEM AND AN EXTENSION OF FIBONACCI NUMBERS Feb.

(e 2]
T;a,b)T(x,c,b) = Z XnCn(a, c,b)

n=0

for arbitrary b.

10.

11.

12,

13,
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