ON A CERTAIN KIND OF FIBONACCI SUMS*

GEORGE LEDIN, JR., Institute of Chemical Biology, University of San Francisco, San Francisco, Calif.

INTRODUCTION

The sum

$$S(m,n) = \sum_{k=1}^{n} k^{m} F_{k}$$

(where F_k is the k^{th} Fibonacci number) has been studied for particular values of m. The cases m=0 and m=1 are well known [1,2]. The case m=3 was proposed as a problem [3] by Brother U. Alfred of St. Mary's College, California; this problem was later solved [4] by means of translational operator techniques and linear recurrence relations [5]. This method of solution [4] can be generalized for arbitrary positive integral values of m, but it usually will involve the time-consuming, error-inviting procedure of solving 2m+2 simultaneous equations in 2m+2 variables, which is already a complicated task for m=3.

The method outlined in this paper is much more elementary, and the work required in finding a particular sum is reduced to several simple integrations. The procedure discussed below not only facilitates the computation of these sums, but it is also a useful tool in the solution of other problems, such as the problem of Fibonacci "centroids" proposed by the author [6], certain aspects of Fibonacci convolutions, and the like.

THEORY

Consider the sum

(1)
$$\sum_{k=1}^{n} k^{m} F_{k} = S(m,n) = F_{n+1} P_{2}(m,n) + F_{n} P_{1}(m,n) + C(m)$$

^{*}This paper was originally presented at the Fibonacci Association Meeting of 21 May 1966.

where F_k denotes the k^{th} Fibonacci number ($F_0 = 0$, $F_1 = 1$, $F_{k+2} = F_{k+1} + F_k$), $P_1(m,n)$ and $P_2(m,n)$ are polynomials in n of degree m, and C(m) is a constant depending only on the degree m.

Thus we can write

(2a)
$$P_1(m,n) = a_m n^m + a_{m-1} n^{m-1} + \cdots + a_1 n + a_0$$

(2b)
$$P_2(m,n) = b_m n^m + b_{m-1} n^{m-1} + \cdots + b_1 n + b_0$$

Theorem 1.

$$C(m) = -b_0$$

Proof.

Take
$$S(m, 0) = F_1P_2(m, 0) + F_0P_1(m, 0) + C(m)$$
 from (1))
 $0 = P_2(m, 0) + C(m)$ but $P_2(m, 0) = b_0$ from (2b)).

Inspection of the first few values of m (see Table I) leads us to the following determination of the polynomials (2a) and (2b).

(3a)
$$P_1(m,n) = \sum_{j=0}^{m} (-1)^j {m \choose j} M_{1,j} n^{m-j}$$

(3b)
$$P_2(m,n) = \sum_{j=0}^{m} (-1)^j {m \choose j} M_{2,j} n^{m-j}$$

where $\binom{m}{j}$ are the binomial coefficients, and $M_{1,j}$ and $M_{2,j}$ are certain numbers, the law of formation of which is yet to be determined (refer to Table II).

Theorem 2.

(4a)
$$P_{1}(m + 1, n) = (m + 1) \int_{0}^{n} P_{1}(m, n) dx + a_{0}^{t}$$

(4b)
$$P_2(m + 1, n) = (m + 1) \int_0^n P_2(m, x) dx + b_0^{\dagger}$$

Table I

$$S(m,n) = \sum_{k=1}^{n} k^{m} F_{k} = F_{n+1} P_{2}(m,n) + F_{n} P_{1}(m,n) + C(m)$$

 $-673092n^5 + 6994050n^4 - 58136520n^3 + 362437965n^2 -$

- 1506355510n + 3130287705) - 5064892768

 $\label{eq:table II} \mbox{LIST OF THE } \mbox{M$_{1,j}$ AND M_{2,j}$ NUMBERS}$

j	M ₁ , j	M ₂ , j
0	1	1
. 1	1	$^{-}$
2	5	8
3	31	50
4	257	416
5	2671	4322
6	33305	53888
7	484471	783890
8 ,	8054177	13031936
9	150635551	243733442
10	3130287705	5064892768

(5a)
$$a'_0 = 1 - (m+1) \int_0^1 (P_1(m, x) + P_2(m, x)) dx$$

(5b)
$$b_0^{\dagger} = 1 - (m + 1) \int_0^1 (P_1(m,x) + 2P_2(m,x)) dx$$

Proof.

Prove (4a) first. Using (3a) we have

$$(m+1) \int_{0}^{n} P_{1}(m,x) dx = (m+1) \int_{0}^{n} \sum_{j=0}^{m} (-1)^{j} {m \choose j} M_{1,j} x^{m-j} dx =$$

$$= (m+1) \sum_{j=0}^{m} (-1)^{j} M_{1,j} {m \choose j} \int_{0}^{n} x^{m-j} dx =$$

$$= (m+1) \sum_{j=0}^{m} (-1)^{j} M_{1,j} {m \choose j} \frac{n^{m+1-j}}{m+1-j} = \sum_{j=0}^{m} (-1)^{j} M_{1,j} {m+1 \choose j} n^{m+1-j} = P_{1}(m+1,n) - a_{0}^{n}$$

 (a_0^{\prime}) is determined for j=m+1, a value which is missing from the summation sign.) A similar proof establishes (4b).

Now,

$$a_0' = P_1(m + 1, 0) = P_1(m + 1, 1) - (m + 1) \int_0^1 P_1(m, x) dx$$

and

$$b_0' = P_2(m + 1, 0) = P_2(m + 1, 1) - (m + 1) \int_0^1 P_2(m, x) dx$$

and since $S(m + 1, 1) = 1 = P_2(m + 1, 1) + P_1(m + 1, 1) + C(m + 1)$ (C(m + 1) = $-b_0^{\dagger}$ by Theorem 1) then

$$1 = (m + 1) \int_{0}^{1} P_{1}(m, x) dx + a_{0}^{t} + (m + 1) \int_{0}^{1} P_{2}(m, x) dx$$

and the value of $\,a_0^{\:\raisebox{3.5pt}{\text{\circle*{1.5}}}}\,$ follows. A similar manipulation yields the required value of $\,b_0^{\:\raisebox{3.5pt}{\text{\circle*{1.5}}}}\,$.

Corollary 1

$$\frac{dP_1(m+1,n)}{dn} = (m+1)P_1(m,n); \frac{dP_2(m+1,n)}{dn^r} = m(m+1)P_2(m,n) .$$

Corollary 2

$$\frac{d^{r}P_{1}(m, n)}{dn^{r}} = m(m - 1) \cdots (m - r + 1)P_{1}(m - r, n); \frac{d^{r}P_{2}(m, n)}{dn^{r}} = m(m - 1) \cdots$$

$$\cdots (m - r + 1)P_{2}(m - r, n).$$

Corollary 3

$$P_2(m, 1) = a_0$$
 (refer to (2a, 2b)).

Example 1

Problem. Obtain the sum
$$\sum_{k=1}^{n} kF_k$$
 .

Solution. We know

$$\sum_{k=1}^{n} F_{k} = F_{n+1} + F_{n} - 1 \quad (m = 0) .$$

So the polynomials are $P_1(0,n) = 1$, $P_2(0,n) = 1$. Now, applying Theorem 2,

$$P_1(1,n) = \int_0^n 1 dx + a_0^{\dagger} = n + a_0^{\dagger}$$
 and $P_2(1,n) = \int_0^n 1 dx + b_0^{\dagger} = n + b_0^{\dagger}$

$$a_0^{\dagger} = 1 - \int_0^1 (1+1) dx = 1 - 2 = -1$$
 and $b_0^{\dagger} = 1 - \int_0^1 (1+2) dx = 1 - 3 = -2$

Thus, the required sum is equal to $F_{n+1}(n-2) + F_n(n-1) + 2$.

Example 2

Problem. Obtain the sum

$$\sum_{k=1}^{n} k^2 F_k .$$

Solution. From Example 1, we know

$$\sum_{k=1}^{n} kF_{k} = F_{n+1}(n-2) + F_{n}(n-1) + 2$$

So the polynomials are $P_1(1,n) = n-1$, $P_2(1,n) = n-2$. Now, applying Theorem 2

$$P_1(2, n) = 2 \int_0^n (x - 1) dx + a_0^{\dagger} = n^2 - 2n + a_0^{\dagger} \text{ and } P_2(2, n) = 2 \int_0^n (x - 2) dx + b_0^{\dagger} = n^2 - 4n + b_0^{\dagger}$$

$$a_0' = 1 - 2 \int_0^1 (x - 1 + x - 2) dx = 1 - 2 \int_0^1 (2x - 3) dx = 1 - 2(1 - 3) = 1 + 4 = 5$$

$$b_0' = 1 - 2 \int_0^1 (x - 1 + 2x - 4) dx = 1 - 2 \int_0^1 (3x - 5) dx = 1 - (3 - 10) = 1 + 7 = 8$$

Thus, the required sum is equal to $F_{n+1}(n^2-4n+8)+F_n(n^2-2n+5)-8$.

Theorem 3.

If u_k are the "generalized" Fibonacci numbers (i. e., numbers obeying the Fibonacci recurrence relation, but with different initial conditions) with the properties $u_{k+2} = u_{k+1} + u_k$, $u_0 = q$, $u_1 = p$, [7], then

$$\sum_{k=1}^{n} k^{m} u_{k} = u_{n+1} P_{2}(m, n) + u_{n} P_{1}(m, n) + K(m),$$

where P_2 and P_1 are polynomials defined as above (3a, 3b) and $K(m) = -(pb_0 + qa_0)$.

In Theorem 3 we have stated a simple and useful result. The proof of this theorem is trivial, since $u_k = pF_k + qF_{k-1}$ [7]. Two particular cases are most interesting. The Fibonacci case (p = 1, q = 0) has been discussed above; the Lucas case (p = 1, q = 2) is also quite simple (refer to Table III).

At this stage it seems clear that a study of the polynomials $P_1(m,n)$ and $P_2(m,n)$ and of the numbers $M_{1,j}$ and $M_{2,j}$ pose by themselves an interesting problem. The intuitive bounds

$$M_{1,j+1} \ge 2(j+1)M_{1,j}$$
 $M_{2,j+1} \ge 2(j+1)M_{2,j}$ $(j \ge 1)$

hold for all cases shown on Table II and can be proven by total induction using the formulas developed for a_0^{\prime} and b_0^{\prime} . A very curious relationship exists between these numbers; this relationship, and the fact that these numbers are members of a whole class of numbers $M_{1,j}$ can be appreciated effectively in Table IV. Horizontal addition of two consecutive $M_{1,j}$ numbers is the basic

Table III

$$T(m,n) = \sum_{k=1}^{n} k^{m} L_{k} = L_{n+1} P_{2}(m,n) + L_{n} P_{1}(m,n) + K(m)$$

principle in the construction of Table IV; the results of successive horizontal additions can be followed with the aid of the broken lines. The following illustration should clarify the process:

These zig-zag relationships imply the second-order linear difference equation

(6a)
$$M_{i,j} = M_{i-1,j} + M_{i-2,j} - (i-3)^{j}$$
(i = 3, 4, 5,...; j = 0, 1, 2,...)

the solution of which is shown in Eq. (6b).

 $\label{eq:table_interdependence} \text{Table IV}$ INTERDEPENDENCE CHART FOR THE $\,\,\text{M}_{i,j}\,\,$ NUMBERS

(6b)
$$M_{i,j} = F_{i-1}M_{2,j} + F_{i-2}M_{1,j} - \sum_{k=0}^{i-4} (k+1)^{j} F_{i-3-k}$$

where F_i represents the i^{th} Fibonacci number.

The interdependence of the fundamental set of numbers $\,M_{1,\,j}\,$ and $\,M_{2,\,j}\,$ is noted from the formulas

(6e)
$$M_{1,j} = \sum_{h=0}^{j} (-1)^{h} {j \choose h} M_{2,j-h} \text{ and } M_{2,j} = \sum_{h=0}^{j} {j \choose h} M_{1,j-h}$$

The interdependence of the complete set of numbers $\,M_{i,\,j}\,$ is evidenced with the formula 1 :

(6d)
$$M_{i,j} = (i - 1)^j + \sum_{h=0}^{j-1} (2^{j-h} - 1) {j \choose h} M_{i,h}$$

with $j \ge 0$, $M_{i,0} = 1$, $M_{i,1} = i \ge 1$.

David Zeitlin, in a paper to be published in the <u>Fibonacci Quarterly</u>, ² has shown that the following relationship holds:

(6e)
$$M_{i,j} = \sum_{h=0}^{j} h! \, \mathcal{S}_{j}^{h} \, F_{h+i}$$

where $\mathbf{8}_{j}^{h}$ are the Stirling numbers of the second kind.

The polynomials $\,P_1\,$ and $\,P_2\,$ are, similarly, special cases of a more general case of polynomials.

¹The author is indebted to Dr. Verner E. Hoggatt, Jr. for pointing out this relationship through personal correspondence.

²The author acknowledges the referee for this interesting remark.

(7a)
$$P_{i}(m,n) = \sum_{j=0}^{m} (-1)^{j} M_{i,j} \binom{m}{j} n^{m-j}$$

which are interrelated in the following ways:

(7b)
$$P_{i+h}(m,n) = P_{i}(m,n-h)$$

(7e)
$$P_{i}(m,n) = P_{i-1}(m,n) + P_{i-2}(m,n) - (n+3-i)^{m}$$

$$(i = 3, 4, 5, \cdots)$$

These properties (7) enable us to obtain the following formula, thus generalize (1):

(8)
$$S(m, n - h) = F_{n-h+1}P_{2+h}(m, n) + F_{n-h}P_{1+h}(m, n) + C(m)$$

We have investigated sums of the form

$$F_1 + 2^m F_2 + 3^m F_3 + \cdots + (n-1)^m F_{n-1} + n^m F_n$$

and it seems quite natural* that we apply our results to the "convolution type" sums of the form

$$n^{m}F_{1} + (n-1)^{m}F_{2} + (n-2)^{m}F_{3} + \cdots + 2^{m}F_{n-1} + F_{n}$$
.

Theorem 4.

(9)
$$\sum_{k=1}^{n} (n-k+1)^{m} F_{k} = R(m,n) = M_{3,m} F_{n+1} + M_{2,m} F_{n} - P_{3}^{*}(m,n)$$

^{*}Mathematicians' beloved excuse.

where $M_{3,m}$ and $M_{2,m}$ are particular cases of the $M_{i,j}$ numbers (see Table IV) and $P_3^*(m,n)$ (the "conjugate" of the polynomial $P_3(m,n)$) is defined as follows

(10)
$$P_3^{\star}(m,n) = \sum_{j=0}^{m} M_{3,j} \binom{m}{j} n^{m-j}$$

A list of these "convolution-type" sums is provided in Table V.

Table V
$$\sum_{k=1}^{n} (n - k + 1)^{m} F_{k} = R(m, n) = M_{3,m} F_{n+1} + M_{2,m} F_{n} - P_{3}(m, n)$$

$$m = 0 \qquad R(0,n) = F_{n+1} + F_{n} - 1$$

$$m = 1 \qquad R(1,n) = 3F_{n+1} + 2F_{n} - (n + 3)$$

$$m = 2 \qquad R(2,n) = 13F_{n+1} + 8F_{n} - (n^{2} + 6n + 13)$$

$$m = 3 \qquad R(3,n) = 81F_{n+1} + 50F_{n} - (n^{3} + 9n^{2} + 39n + 81)$$

$$m = 4 \qquad R(4,n) = 673F_{n+1} + 416F_{n} - (n^{4} + 12n^{3} + 78n^{2} + 324n + 673)$$

$$m = 5 \qquad R(5,n) = 6993F_{n+1} + 4322F_{n} - (n^{5} + 15n^{4} + 130n^{3} + 810n^{2} + 3365n + 6993)$$

If Q(m,n) are the Weinshenk polynomials in n of degree m [8], then

(11)
$$P_{i}^{*}(m,n) = Q(m,n+i-1)$$
 and $P_{i}(m,n) = (-1)^{m}Q(m,-n+i-1)$

The above relationships (11) follow from the fact that $P_i^*(m,n) = (-1)^m P_i(m,-n)$. The constant term is then $C(m) = P_i^*(m,1) = Q(m,1)$, and the original sum (1) can be further written as follows:

(12)
$$S(m,n) = (-1)^{m} \{F_{n+1}Q(m,-n+1) + F_{n}Q(m,-n) - Q(m,1)\}$$

The theoretical interest that these sums arouse is beyond doubt the primary motive for their scrutiny. Weinshenk [8] has applied some of these

results to a problem of reflection of light. The problem of centroids [6] can be dealt in a more general manner with the aid of an auxiliary function defined by

(13)
$$G(r, s, n) = \frac{\sum_{k=1}^{n} k^{r} F_{k}}{\sum_{k=1}^{n} k^{s} F_{k}}$$

In particular, $G(1, 0, n) = G_n$ has the following limiting behavior:

$$\lim_{n\to\infty} \frac{G_{n+1}}{G_n} = \lim_{n\to\infty} (G_{n+1} - G_n) = 1.$$

The problems investigated in this paper are far from being completely solved. Although we could have generalized the subscripts in all our sums [9], we purposely avoided this. However, some questions of importance have not been answered. Some of these questions are:

1. Could the theory of S(m,n) be extended to negative m? (All we need to study is m = -1, since the rest of the sums can be obtained with the aid of the algorithms developed in this paper; notice that

$$P_{i}(-1,n) = \lim_{m \to 0} \frac{\partial^{2} P_{i}(m,n)}{\partial n \partial m}$$
.)

- 2. Could the theory of S(m, n) be extended to rational (and to real) [10] m? If this is possible, what can be said about complex m?
 - 3. What is the possibility of studying sums of the type

$$S(\mathbf{r}, \mathbf{s}, \mathbf{n}) = \sum_{k=1}^{n} k^{r} F_{k}^{s}$$

with the aid of standard techniques?

ACKNOWLEDGEMENTS

The author wishes to express his gratitide to Dr. Verner E. Hoggatt, Jr. and the referee, who had very useful and constructive comments on several aspects of this paper.

REFERENCES

- 1. S. L. Basin and V. E. Hoggatt, Jr., "A Primer on the Fibonacci Sequence, Part I," The Fibonacci Quarterly, Vol. 1, No. 1, (1963) p. 66.
- 2. S. L. Basin and V. E. Hoggatt, Jr., "A Primer on the Fibonacci Sequence, Part II," The Fibonacci Quarterly, Vol. 1, No. 2, (1963) p. 67.
- 3. Problem H-17 of "Advanced Problems and Solutions," The Fibonacci Quarterly, Vol. 1, No. 2 (1963) p. 55.
- 4. Solution to Problem H-17, The Fibonacci Quarterly, Vol. 2, No. 1, (1964) p. 51.
- 5. James A. Jeske, "Linear Recurrence Relations" (Part I), The Fibonacci Quarterly, Vol. 1, No. 2, (1963) p. 69.
- 6. Problem H-57 of "Advanced Problems and Solutions," The Fibonacci Quarterly, Vol. 3, No. 1, (1965) p. 45.
- 7. Problem H-44 of "Advanced Problems and Solutions," The Fibonacci Quarterly, Vol. 2, No. 3, (1964) p. 205.
- 8. Ronald Weinshenk, "Convolutions and Difference Equations Associated with with the N-Reflections of Light in Two Glass Plates," (Master's Thesis), San Jose State College, June 1965.
- 9. Ken Siler, "Fibonacci Summations," The Fibonacci Quarterly, Vol. 1, No. 3, (1963) p. 67.
- 10. Eric Halsey, "The Fibonacci Number F_u, where u is not an Integer," <u>The</u> Fibonacci Quarterly, Vol. 3, No. 2, (1965) p. 147.

* * * *