ON A CERTAIN KIND OF FIBONACCI SUMS™
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INTRODUCTION

The sum

n
S(m,n) = z:kka
k=1

(where Fk is the kth

Fibonacci number) has been studied for particular val-
ues of m. The cases m = 0 and m = 1 are well known [1,2]. The case
m = 3 was proposed as a problem [3] by Brother U, Alfred of St. Mary's
College, California; this problem was later solved [4] by means of transla-
tional operator techniques and linear recurrence relations [5]. This method
of solution [4] can be generalized for arbitrary positive integral values of m,
but it usually will involve the time-consuming, error-inviting procedure of
solving 2m + 2 simultaneous equations in 2m + 2 variables, which is already
a complicated task for m = 3.

The method outlined in this paper is much more elementary, and the
work required in finding a particular sum is reduced to several simple inte-
grations., The procedure discussed below not only facilitates the computation
of these sums, but it is also a useful tool in the solution of other problems,
such as the problem of Fibonacci "centroids' proposed by the author [6], cer-

tain aspects of Fibonacci convolutions, and the like,

THEORY
Consider the sum
n
m
) Dk F, = S(m,n) = F_, P,(m,n) + F_P (m,n) + C(m)
k=1

*This paper was originally presented at the Fibonacci Association Meeting of
21 May 1966.
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where F, denotes the kth Fibonaceci number (Fy = 0, F; = 1, Fgiy = Fiyy
+ Fg), Py(m,n) and Py(m,n) are polynomials in n of degree m, and C(m)
is a constant depending only on the degree m,

Thus we can write

(22) Py(m,n) = ayun™ + ap_n™~1 4+ .0 4+ an + a

m-1

(2b) Py(m,n) = byn™ + byn

1

+ <« + bn + by

Theorem 1,
C(m) = -b,
Take S(m,0) = F;Py(m,0) + FyP,(m,0) + C(m) from (1))
0 = Py(m,0) + C(m) but Py(m,0) = b, from (2b)) .

Inspection of the first few values of m (see Table I') leads us to thefol-

lowing determination of the polynomials (2a) and (2h).

m
- J{m m—j

(32) Py(m,n) = ) (-1) (j ) M, i)

j=

m
(3b) Py(m,n) = Z (-1)} ( I;‘n) Mz’jmm_J

j=0
where (IJT? are the binomial coefficients, and M; j and M, j arecertain
numbers, the law of formation of which is yet tobe determined (refer to Table II).

Theorem 2,
n
(4a) Pym + 1,n) = (m + 1)._’. Pi(m,n)dx + aj
0

n

(4b) Pym + 1,m) = (m + 1) [ Pym,x)dx + b}
0
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) Table I
LIST OF FIBONACCI SUMS OF THE TYPE

S(m, n) =Zk21 K™F, = F_, P,(m,n) + F P (m,n) + C(m)
S(0,n) = F (1)+F (1) -1
S(1,n) = Fn+1(n -2) + Fn(n -1)+2
S(2,n) = FnH(nZ - 4n + 8) + Fn(n2 -2n+5)-8
S(3,n) = Fn+1(n3 - 6n% + 24n - 50) + Fn(n3 - 3n2 + 15n - 31) + 50
S(4,n) = Fn+1(n4 - 8n3 + 48n% - 200n + 416) + Fn(n4 -4n3+ 30n2 - 124n+
+ 257) - 416
S(5,n) = Fn+1(n5 - 10n* + 80n® - 500n% + 2080n - 4322) +

+ Fn(n5 - 504+ 50n% - 310n? + 1285n - 2671) + 4322
S(6,n) = F_, (nf - 12n° + 120n% - 100003 + 6240n2 - 25932n + 53888) +

n+i
+ Fn(n6 - 6n% + 75n% - 620n3 + 3855n% - 16026n + 33305) -
- 53888
S(7,n) = F__ (n' - 14nf + 168n5 - 1750n% + 14560n% - 90762n% +
n+1

+ 877216n - 783890) + Fn(n7 ~ 7nb + 105n° - 10850t +
+ 8995n° -~ 56091n2 + 233135n - 484471) + 783890
S(8,n) = F _,,m® - 16nT + 224n° - 2800n° + 29120n* - 242032n% +
+1508864n% - 6271120n + 13031936) + Fn(n8 - 8nT+ 140n8 -
- 1736n° + 17990n? - 14957613 + 932540n2 ~ 3875768n +
+ 8054177) - 13031936
8(9,n) = Fn+1(n9 - 18n8 + 288n7 - 4200nf + 52416n° - 544572n4 +
+ 4526592n° - 28220040n% + 117287424n - 243733442) +
+ Fn(n9 - 9n® + 180n7 - 2604n® + 32382n° - 336546n! +
+ 2797620n% - 1744095602 + 72487593n - 150635551)
+ 243733442
S(10,n) = Fn+1(n1° - 20n® + 360n8 - 6000n” + 87360n°% - 1089144n° +
+11316480n%- 94066800n% + 58648712002 - 2437334420n +
+ 5064892768) + Fn(n10 - 10n°+ 22508 - 3720n7 + 53970n8 -
- 673092n% + 6994050nt - 58136520n% + 362437965n% -
- 1506355510n + 3130287705) -~ 5064892768
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Table II
LIST OF THE M;,j AND M,,j NUMBERS
j My, j My, j
0 1
1 2
2 8
3 31 50
4 257 416
5 2671 4322
6 33305 53888
7 484471 783890
8 8054177 13031936
9 150635551 243733442
10 3130287705 5064892768
1
(52) aj = 1-(m+1)f (Pym,x) + Pylm,x))dx
0
1
(5b) by = 1 - (m + 1) [ (Pym,x) + 2P;(m,x))dx
0
Proof.
Prove (4a) first. Using (3a) we have
n n m
(m + 1) ( Py(m,x)dx = (m + 1) / > 1)) (‘;“) My, Jax =
oj j=o n
m
= m+ 1)) vy, 5 (I;‘) / P ax =
j=0 0
—, )\ o™ - j m+ 1) _m+i-j
S et (5) S - X entn (7 )
= =0

= Py(m + 1,n) - a
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(af is determined for j

49
=m + 1, avalue which is missing from the summa-
tion sign.) A similar proof establishes (4b).
Now,
1
aj = Pym + 1,0) = Pym +1,1) - (m +1) [ Pilm,x)dx
0
and
b, =

1
0 Pz(m + 1’ O)

Pym + L,1) - (m + 1) f Pylm,x)dx

0

and since S(m +1,1) =1 =Py(m + 1,1) + Py(m + 1,1) + C(m + 1)
-bj by Theorem 1) then

I}

(Clm +1) =

1 1
1= m+1) [ Pym,x)dx + al + (m + 1) [ Pylm,x)dx
0 0
and the value of a:) follows. A similar manipulation yields the requiredvalue

of Dy .

Corollary 1

dPy(m + 1,n) dPy(m + 1,n)
an = (m + 1)P1(m9n)§_—__

T =

m(m + 1)Py(m, n)
dn

Corollary 2

drPl(m, n)

T

drPZ(m,n)
m@m - 1)ec*(m - v + 1)Py(m - r,n);
dn

= =m(m - 1)ec-
dn

co(m - r+1)Py(m - r,n) .
Corollary 3

Pz(m, 1) = ay

(refer to (2a, 2b)).
Example 1

n
Problem. Obtain the sum Z KF, .

k=1
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Solution. We know

n
P =F , +F -1 (u=0.
k=1

So the polynomials are P(0,n) = 1, Py(0,n} = 1, Now, applying Theorem 2,

n n
Pi(l,n) = fldx + a:) = n + a:) and Py(1,n) = f 1dx+b(') = n + b:)

9 0

i

1
al=1- [@Q+Ddx=1-2=-1 and Dby=1- [ @Q+2dx=1-3=-2
0 0

Thus, the required sum is equal to Fn+1(n - 2) + Fn(n - 1)+ 2,

Example 2

Problem. Obtain the sum

n
> K°F, .
k=1

Solution, From Example 1, we know

n
Zka = F -2 +F -1 +2
k=1

So the polynomials are Py(l,n) = n-1, Py(I,n) = n-2, Now, applying

Theorem 2

n n
Py(2,n) = zf (x - V)dx + af =n? - 2n +a; and Py(2,n) = Zf (x - 2)dx +bj = n¥- 4n+Dbj

0 0
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1 1
aa=1—2f(x—1+x—2)dx=1—2 f(zx-s)dx=1_2(1-3)=1+4=5
0 0

1 1
bp=1-2f(c-1+2x-9dx=1-2 [(Bx-5)dx=1-(3-10) = 1+7
0 0

1l
5]

Thus, the required sum is equal to Fn+1(n2 - 4n + 8) + Fm(n2 - 2h +5) - 8,

Theorem 3.
If u, are the "generalized' Fibonacci numbers (i. e., numbers obeying
the Fibonacci recurrence relation, but with different initial conditions) with

the properties uk+2 = Uk +uk’ U = q, U = p, [7]’ then
n
m
Zk w = u . Py(mn) + upP;(m,n) + Km),
k=1

where P, and P; are polynomials defined as above (3a, 3b) and K(m) =
- (pbg + qag ).

In Theorem 3 we have stated a simple and useful result. The proof of
this theorem is trivial, since U = pF) + qu_ . [7] Two particular cases
are most interesting. The Fibonacci case (p = 1, g = 0) hasbeendiscussed
above; the Iucas case (p = 1, g = 2) is also quite simple (refer to TableIIl).

At this stage it seems clear that a study of the polynomials Py(m,n) and
Py(m,n) and of the numbers My,j and Mp,j pose by themselves an interest-

ing problem. The intuitive bounds
My,j+1 2 2(G + l)Mi,j My, j+1 2 2@ + 1)1VI2’J‘ G 2 1)

hold for all cases shown on Table II and can be proven by total induction using
the formulas developed for a:) and b). A very.curious relationship exists
between these numbers; this relationship, and the fact that these numbers are
members of a whole class of numbers Mj,j can be appreciated effectively in

Table IV. Horizontal addition of two consecutive Mj,j numbers is the basic
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Table III
LIST OF LUCAS SUMS OF THE TYPE

s~ n . m _
Tm,n) =), - k'L =L P(m,n) + L P (m,n) + K@m)

T(O,n) =L (1) +L (1)-3

T@,n) = Ln+1(n -2) + Ln(n -1)+4

T(2,n) = Ln+1(n2 -4n+8) + Ln(n2 - 2n+ 5)— 18

T(3,n) = Ln+1(n3 - 6n% + 24n - 50) + Ln(n3 - 3n% + 15n - 31) + 112

T@4,n) = Ln+1(n4 - 8n% +48n? - 200n + 416) + Ln(n4 - 4n% + 30n% - 124n
+257) - 930

T(5,n) = Ln+1(n5 - 10n? + 80n® - 500n? + 2080n - 4322) +

+ Ln(n5 - 5n + 50n® - 310n2 + 1285n - 2671) + 9664

I

]

B B B B B
I
B~ W N =R O

8
I

principle in the construction of Table IV; the results of successive horizontal
additions can be followed with the aid of the broken lines. The following illus-

tration should clarify the process:

1 _5 _31
AN - AN —~
AN — AN ~7
\1+5%6 — _ . 5+31=36
il - - 6+36/§42
- Mo_
L 2+6=8 _BMM2=50
v AN - \
24 gz 50

These zig-zag relationships imply the second-order linear difference equation

- - G- 3)
(62) M= MM Gi-3

(i =34, 5,°¢°; j=0, 1, 2,e°°)

the solution of which is shown in Eq. (6b) .
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Table IV
INTERDEPENDENCE CHART FOR THE Mi i NUMBERS

257 2671
N Ve N 7
AN 7 N 7
N / AN 7
288L _ _ 2928
T——824—_ T —-—3216
T —366——_ ——3540
// N —~—3906
y N N
- N
416 ~4322
7 N e
~N 7 N 7
N 7 N 7
466— _ _ 4738
——524—_ _ _ T ——5204
T ——592— _ _ T ——5728
7N —~——6320
AN 7 \\
7 \\ 7 N
673< 6993
7 N Ve
~ / \\ //
54 7666
T ——848— _ _ T ——8420
T T —958 — _ — ——9268
YN —~— 10226
7 \ ~ N
/ N Vz \\
130 1088Z 11314
s AN /
\\ // AN //
_ 12185 12402
_ T T—1368— T —13620
T 1542 — T T —14988
/ \ T T —16530
/ N / N
/ \ / \\
203Z 1745% 18275
N e N /
// \\ Ve
2 TioasT 200207
T 2180 — _ _ T —21968
———2446 _ ———24148
’ — — 26594
/
/ \ s N
306 Na7594 99346
7 N /
\\ \\ /
30587 _ 32098”
T ——3404—__ <~ T —35156
~— 3796~ — ~ —— 38560
/ — -
, N - 42356
/ \ v AN
\ e AN
445 4241 46597
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-4
= - j
6b) M= MM - D e D g
=0

where Fi represents the ith Fibonacci number.
The interdependence of the fundamental set of numbers My, j and My j

is noted from the formulas

j

j
(6c) My,j = Z(—l)h (%1) Mp,j-h and My, j = Z (%1) My,j-h
h=0

h=0

The interdependence of the complete set of numbers Mi i is evidenced withthe
?

formulal:

J-1
(6d) My = G- et (1]1) M; h
h=0

with j 2 0, Mio=1, M“:iZl.
H 3
David Zeitlin, in a paper to be published in the FibonacciQuarterly, 2has

shown that the following relationship holds:

j
B h
(6e) M, - th B3 Py
h=0

where ,‘SI; are the Stirling numbers of the second kind.
The polynomials P; and P, are, similarly, special cases of a more

general case of polynomials.

The author is indebted to Dr. Verner E. Hoggatt, Jr. for pointing out this re-
lationship through personal correspondence.
2The author acknowledges the referee for this interesting remark,
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. m
(72) P (m,n) = > (—1)jMi,j (Ijn) p-
=0

which are interrelated in the following ways:
(7b) P; +h(m, n) = Pi(m,n - h)

(7c) Pi(m,n) = Pi_l(m,n) + Pi_z(m,n) -n+3- i)m

These properties (7) enable us to obtain the following formula, thus generalize

1):

(8) Sm,n - h) = Fn-h+1Pz 4h(m, n) + Fn-hP1+h(m’ n) + C(m)
We have investigated sums of the form
Fy+ 20F, + 3 F; +++ + (o - 1)an_1 +nF

and it seems quite natural* that we apply our results to the "convolution type'

sums of the form
an1+(n—l)mF2+(n-2)mF3+“. + oME + F

Theorem 4.

n
m _ _ — P¥
©® Y @-k+17F = R@n) = M F o+ M, F - PXm,n)
k=1

*Mathematicians' beloved excuse.
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where M, .m and M, are partmular cases of the M i numbers (see
Table IV) and Py(m, n) (the ""conjugate" of the polynomial Ps(m,n)) is defined

as follows

m
* _ m) m-j
(10) Pylm, n) ZMM (J) n
=0

A list of these '""convolution-type'' sums is provided in Table V,

Table V
n LIST OF SUMS OF THE TYPE
;(n -k + D™F = Rmyn) = My F o+ M, F - Psmn)

m=0 R(0,n) =Fn+1+Fn- 1

m=1 R(1,n) = 3Fn+1 + ZFn - o + 3)

m=2 R = 13F ., +8F - (0% + 6n + 13)

m =3 R@n) = 81F _ +50F - (3 + 9n? + 39n + 81)

m =4 R@n) = 673F  +416F - (n? + 12n% + 78n% + 324n + 673)

m =5 R(n) = 6993F  +4822F - (@® + 15nt + 130n° + 810n2 + 3365n + 6993)

If Q(m,n) are the Weinshenk polynomials in n of degree m [8], then
(11) Pim,») = Qm,n+i-1) and Pm,n) = 1™Qm,-n +1i- 1)
The above relationships (11) follow from the fact that P*i‘(m, n) = (—1)mPi(m,—n).

The constant term is then C(m) = Pi(m,1) = Q{m, 1), and the original sum (1)

can be further written as follows:

(12)  Stm,n) = DT{F_, Qm,-n + 1) + F Qm,-n) - QGm, Df

The theoretical interest that these sums arouse is beyond doubt the pri-

mary motive for their scrutiny. Weinshenk [8] has applied some of these
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results toa problem of reflection of light. The problem of centroids [6] can be

dealt in a more general manner with the aid of an auxiliary function defined by

13) G(r,s,n) =

The problems investigated in this paper are far from being completely
solved. Although we could have generalized the subscripts in all our sums [9],
we purposely avoided this. However, some questions of importance have not
been answered. Some of these questions are:

1. Could the theory of S(m,n) be extended to negative m? (Allwe need
to study is m = -1, since the rest of the sums can be obtained with the aid of

the algorithms developed in this paper; notice that

azPi (m, n)

Pi(_l, Il) = lim W

m—>0
2. Could the theory of S(m,n) be extended to rational (and to real) [10]

m? If this is possible, what can be said about complex m?

3. What is the possibility of studying sums of the type

n
Ste,s,m) = ) krFE
k=1

with the aid of standard techniques?
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