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Raymond Whitney, Mathematics Department, Lock Haven State College, Lock
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tobe new or extending old results. Proposers should submit solutions or other
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H-113 Proposed by V. E. Hoggatt, Jr., San Jose State, College, SanlJose, Calif.

If
[e o] 00 F
Z :R(n)xn =l la+x0),
n=0 j=1
then show
i) R(Ly, - 1) = R(Lgpsg - 1) = 2n n>2
ii) R(L + 1) = 2n n>2

n+3

(In ""Representations by Complete Sequences, ' Oct. 1963 Fibonacci Quarterly,

Theorem 3 states
R(LG_i) = R(LG) = 2n - 1 (n 2’ 1)

This should read n > 2.)

H-114 Proposed by William C. Lombardand V. E. Hoggatt, Jr., San Jose State
College, San Jose, Calif.

Show that the sequence Lg = 2, Ly =1 and Lop=Log*tLh, @> 0)
is complete.
Show that, if any Lk (k > 2) is deleted, then the deleted sequence is
still complete.
161
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Show that, if Lj; or L; or (Lj and Lk;
then the deleted (doubly deleted) sequence is incomplete,
(See H-53, Vol, 3, No. 1, page 45, Fibonacci Quarterly.)

k > j > 2) is (are) deleted,

H-115 Proposed by Stephen Headley, SanJose State College, San Jose, Calif.

fe'e) [
ZR(n)Xn = l |(1 + XLi) ,
i=0

=0
Lucas number, show R(Lyy) = R(Lgp+y) = n + 1,

It

where Li is the ith

H-116 Proposed by V.E. Hoggatt, Jr., San Jose State College, San Jose, Calif.

[0 o] e o}
ZR(n)Xn = | |(1 + xM) ,
n=0 j=0

It

then for né 0 show
i) R(Fy;m) = RFEm+1) = R(Fm+) = Foptt
ii) R(Fs+3) = Fan+g

H-117 Proposed by George Ledin, Jr., San Francisco, Calif.

Prove
Fn+3 Fn+2 Fn+1 Fn
F F F F
n+t2 "nt " n n+1
= Font+eFan
Fn+1 Fn Fn+3 Fn+2
Fn Fn+1 Fn+2 F1r1+3

H-118 Proposed by George Ledin, Jr., San Francisco, Calif.

Solve the difference equation

with C; = a, Cy = b, and Fn is the nth

C
n+2

= +
Fn+2 Cn+1 n

C

Fibonacci number.
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SOLUTIONS
A MANY SPLENDORED THING

H-69 Proposed by M.N.S. Swamy, University of Saskatchewan, Regina, Canada

Given the polynomials Bn(x) and bn(x) defined by,

bn(x) = XBn— 1(x) + bn— 1(x) n > 0)
Bn(x) = (x + 1)Bn_ 1(X) + bn— 1(X) n > 0)
box) = Byx) = 1

It is possible to show that

n

_ n+r+1\_r
Bn(x)_§:< n—r)X ’
=0

and
n
b(x)=§:(n+r)xr.
n n-r
r=0

It can also be shown that the zeros of Bn(x) or bn(x) are all real, negative
and distinct. The problem is whether it is possible to factorize Bn(x) and

bn(x). I have found that for the first few values of n, the result

n

Bn(X) =TT [x + 4 cos? (n f_ 1) o 7—;]

r=1

holds. Does this result hold good for all n? Is it possible to find a similar
result for bn(x)?
Solution by John C. Sjoherg, Carlisle, Pennsylvania

fet fon) = b (3

I

xB,(x%) n >0

fon+1(x)
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then
fn+'2(x) = an’i'i(X) + fn(x) »
with
fox) = 1 and fix) = x
and
2]
7
_ n-r n-2r
L6 = Y < - ) :
=0
Thus

2]
f,@2icosy) = Z (n ;, r) @) (cos y" 7 .

=0
We have by definition that

f (2i coSs y) = in .Sin—'(n-l—_lly
n sy

The zeros of fn(Zi cos y) are then

_ _ri
y n-+1

for r = 1,2,3,°°°,n
and the zeros of fn(x) are then

rmT

X = 2icos
n+1

for r = 1,2,3,"*°,n

We have therefore that

2) — _ 93 rm
bn(x) ll (x 2i cos 2n+1)
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n
= | l 2 _Tm
bn(x) (x+4cos 2n+1)
r=1
Similarly
n
= | | 2 _rm
Bn(x) (X+4cos 2n+2)
r=1
Since
£ =xt &)+f &
with
fo(X) = 1 and fj_(X) = X
we have
fn(l) = Fn+1 .

Also solved by the Proposer.

NO SOLUTION

H-70 Proposed by C.A. Church, Jr., West Virginia University, Morgantown,
West Va.

For n = 2m show that the total number of k-combinations of the first
n natural numbers such that no two elements i and i + 2 appear together in

and if n = 2m + 1, the totalis F F

same s ion is F2 .
the election i e+ et mets

2,

Additional Comment by the Proposer.

A corresponding problem for circular permutations may also be posed
using Kaplansky's second lemma [same reference] which leads in this case to
Lucas numbers. That is, the number of ways of selecting k objects, from n

arrayed on a circle, with no two consecutive is

n n-=k
n -k k °
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Another solution to the problem of choosing k elements from among
1,2,°*°,n suchthat i and i+ 2 do not both occur, is given by M. Abramson

[Explicit Expressions for a Class of Permutation Problems, Canadian Mathe-
matical Bulletin, 7(1964), 349]. Namely, there are

]
2 e

i=0

ways. This, of course, suggests a couple of binomial identities, whenhis ans-

wer is compared with mine,

A VERY PRETTY RESULT

H-71 Proposed by John L. Brown, Jr.,Penn. State University, State College, Pa.
Show

2n

k{2n k-1 _ .n
Z(—l) (k) 2 Lk =5
k=0
2n

k[ 2n k-1 _
Z(—l)(k)z Fk—O
k=0

See also H-77.

Solution by the Proposer.

Let
- 1+V5 _1-V5
a 2 2 b'_ 2 )
so that
k k
F, = 22 and L, = af +bf .
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Hence
2n
5n = (@a - 1)2n - Z (2a)k (_l)zn—k (21?)
k=0
and
2n
57 = (1 - 20)™® = Z D5Ep)k (2121)
k=0
Add to get

[\..4

1)k o1 (212) L,

Subtract to get
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GENERALIZED FIBONOMIAL COEFFICIENTS
H-72 Proposed by Verner E. Hoggatt, Jr., SanJose State College, San Jose, Calif.

Let u, = Fnk’ where Fm is the mth Fibonacci number, and k is any

positive integer; and let

[IIIJ ) [m] B 1 [m | ) um. T ui
0 m|~ |l n|l W u c°° oo s
_ n Yn-i uju u Uy

m-n m-n-1

then show

m] _ m - 17 m - 1
2[11_ - Lnkl_ n J+ L(m—n)k[n - 1]

This problem and many others related are thoroughly discussed in a pap-

er, '"Fibonacci Numbers and Generalized Binomial Coefficients,;'to appear soon
in the Fibonacci Quarterly.

* ok ok kK

CORRECTIONS

Please make the following corrections on the paper, '"On a Certain Kind

of Fibonacci Sums,” Vol, 5, No. 1, pp. 45-58, Fibonacci Quarterly:

Page 46: In Eq. (4a), change P,(m,n)dx to Py(m,x)dx
Page 49: In Corollary 1, the denominator of the second fraction should be dn
instead of dn® . Delete the first m following second = sign.
Page 51: Change the first part of the last paragraph to read:
At this stage it seems clear that a study of the polynomials P,(m,n)
and Py(m,n) and of the numbers Mi,j and M is of basic importance to
the development of any further theory. The numbers M, ; and M, ; pose by

themselves an interesting problem. The intuitive bounds. ..

In the last two lines, change M, i to Mi i
Page 54: In the last line, change case to class .
Page 56: In the table title, add an asterisk to Py, i.e., P;(m,n)

In the last line before Eq. (12), change written to rewritten,

Page 58: Delete the extra with in Reference 8, G L. Jw.
* ok ok kA



