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We define the Fibonacci numbers ju.t as follows: 

' ' UL = 1, u0 = 2, u , 0 = ~u , . + u for n > 1 . 
1 2 n+2 n+1 n 

In a recent note, Re L. Duncan has shown [l] that the determination of the 
greatest common divisor, (u + 1 , u ), for any n ^ 1 by means of the Euclid-
ean A l g o r i t h m a l w a y s r e q u i r e s a number of divisions n satisfying 
the inequality, 

where p is the number of digits in u and 

e = 1 + ^ 
S 2 

Duncan then contrasts the classical Lame result [2] for this case, namely 

n<T-JL
7+ 1 , log f 

and concludes that Lame's theorem is virtually the best possible. [Recall 
Lame's theorem asserts that if a and b are positive integers, then the num-
ber of divisions, n, required to determine (a, b) by the Euclidean Algorithm 
satisfies the inequality, 

n < 7-2— + 1 , log f 

where p is the number of digits in the smaller of the two integers a and b.] 
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Our purpose here is to show that when Lame's bound for the number of 
divisions n in the algorithmic determination of (u , u ) is written in the 
equivalent form 

n"K?J + 1 

then there exist infinitely many pairs of consecutive Fibonacci numbers u and 
u + 1 such that the determination of (u , u ) by the Euclidean Algorithm 
requires exactly 

+ 1 

divisions. Thus the integer 1 which appears in Lame's bound 

pn 
+ 1 > Ll0g £J 

cannot be reduced, and in this sense, Lame's theorem cannot be improved. 

From consideration of tables, we find that to determine the g. c. d. of 
each of the pairs, u^ = 8 and u - 13, u - 89 and U-- = 144, u _ - 987 
and u l f , - 1597, a number of divisions is required that is equal to the Lame 
bound. Note that the smaller number in each pair contains exactly one less 
digit than the larger number; this property will also be imposed in the general 
analysis. It is not clear a priori that there are infinitely many such pairs for 
which the Lame bound is realized. For example, the next logical pair, U- ~ 
= 6765 and u^n = 10946, requires only 19 divisions but the Lame result 
gives an upper bound of 20. 

THEOREM 1: There exist an infinite number of distinct positive integers 
n such that the determination of (u.+ 1 , u j by the Euclidean Algorithm r e -
quires exactly n divisions with n satisfying 
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(1) n > 
^n 1 

l o g £ 2 ' 

PROOF; It i s known [ l ] that the a lgor i thmic determinat ion of (u , u ) 

r e q u i r e s exactly n divisions; i t r e m a i n s to prove (1) holds for infinitely many 

va lues of n. 

Fo r n ^ l , BinetT s formula [3J s ta tes 

£n+l _ /n+ l 

where 

and 

V5 

t= l_±vf 
b 2 

1 -Vs" 

Thus , 

(2) 

Since 

*n+l 
n V? 

rn+1 

V5 

C < 1 , l im •i w-» _2_ 
n+1 

= u 
n— 00 v ^ " n 

Choose € > 0 such that 

(3) l o g V f _ _ 2 €_ > : L 5 
log £ log f 

[This i s poss ib le s ince 

logViT = 0. 350 

and log f = 0. 208] . 
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Corresponding to this value of €, ^ a positive integer n such that 

*n+l 
log u - log £ 

n . vf 
< 6 for n > n , 

o ' 

or, equivalently, 

(4) | logu - (n+1) log £ + logVS"| <€ for n> n . 

Now, p , the number of digits in u , is given by p = log u + 1, where 
the square brackets denote the greatest integer contained in the bracketed quan-
tity. 

Clearly, 
(5) log u = p - 1 + 0 where 0 < 6 < 1 , 

to n ^n n n 

and (4) becomes 
(6) |p n - (1- 0n) - (n+1) log £ + log VS~ | < € (n>nQ) . 

Since (5) holds for arbitrary n, we also have 

(7) log u , - = p ^ - 1 + $ . . with 0 < 8 , _, < 1 , 
& n+1 *n+l vn+l n+1 

where p .' is the number of digits in u ,... ^n+1 & n+1 

Subtracting (5) from (7), we find 

<8> l o g ^ i i = ( D + 1 - p j + ( f l i + 1 - « n . u V1n+1 ^n' VC7n+l °h' 
n 

But it is well-known that 

v U n + 1 f 

hm = f ; 
n -*oo n therefore, for the previosuly chosen € > 0, -] a positive integer n ' such that 

for n > n ' , o 
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( P n + 1 - P n ) + (0n +l ~ V - l o ^ 

We further restr ict n so that 
(10) P . 1 - P = 1 

*n+l ^n 

157 

< € 

is satisfied; that is , u is required to have exactly one more digit than u . 
Since 

lim u = + oo n* 5 

n -*oo 
it is clear that (10) is satisfied for infinitely many values of n. With this addi-
tional restriction on n, equation (9) yields 

or noting 0^+± > 0 , 

(11) 0n>(l-log£) - e 

From (6), 

(12) P - (1 - 0) - (n+1) log i + log \^~< € (n>n ) . 

If we now choose n > max (n , n ') and such that (10) is satisfied, then using 
(11) in (12), 

(13) p n - log f - (n+1) log £ + l o g V ^ - € < €' , • 

or 

(14) n > 
2 + logV5 _ 2€ 

log £ log £ log i 

Using (3), we conclude that for n > max (n , n') and satisfying (10), 

(15) P 
n > n 1 

log£ 2 as asserted. q. e. d. 
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According to Lame's theorem [2], the number of divisions n required 
to determine (u -, u ) is bounded above (strong inequality) by 

p » + 1 , 
log£ 

or equivalently 

T Pr," 
+ 1 F Pn 

( 1 6 ) u-= i , „ „ > 

On the other hand, (15) asser ts that 

for infinitely many values of n. Under certain circumstances, the bounds in 
(16) and (17) are equal. We first prove a simple lemma: (cf. [4], Theorem 
6.3, p. 72): 

LEMMA: Given a irrational, -] infinitely many integers n such that 
n a - [ n a ] > - . 

PROOF: If ^ n such that n a - [ n a ] > — for all n > n , the proposition 
is proved; otherwise, forgiven n > 0, -] n with n > n such that na = [na] 
+ /3with 0<p<- 03 irrational). 

Choose k such that 

2 

Then, letting N = 2 n, we have 

kVi<^<4 or f<2Vl . 

Na = 2 k [na |+ 2k/3 . 

Since 2k/3 c 1, [Na] = 2k[na] and Na - [Na] = 2k/3 > | . 

Thus, A arbitrarily large integers n with n a - [ n a ] > — as asserted. 
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The following theorem shows that Lamefs result 

~ [l0g£] 
is the best possible. 

THEOREM 2: There exist infinitely many distinct values of n such that 
etermination (u _ u ) 1 v n+1, n7 

divisions where n is given by 
the determination (u u ) by the Euclidean Algorithm requires exactly n 

n =feJ 0 9 - - L E R I * 1 

PROOF: From Theorem 1, - infinitely many values of n such that 

n"[i5?+2j» (19) 

The proof of Theorem 1 shows that if p M is the number of digits in u M where 
L be found s-

teger value > p M and such that (19) is satisfied. 
M = max(n , n') + 1, than an n can be found such that p assumes any in-v o o ^ n —jL-

The Lemma assures us that there are infinitely many values of p > p M 

such that 

<20) _in I ' M , 1 

logf "[logf] 2 

and each of these values of p can be combined with an appropriate value of 
n such that (19) is satisfied. But (20) implies 

[logf 2J [log* J [log*! 

Thus (19) in combination with Lame's bound n <h -? + 1 shows 

proving the theorem. q. e. d. 
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The above results have been proved using only elementary techniques. 
A more concise proof can be obtained using some theorems on the uniform dis-
tribution (mod 1) of sequences; this will be the subject of a forthcoming note 
by R. L. Duncan. 
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* * * * * 

CORRECTION 

Please correct the last phrase of fTA Recursive Generation on Two-Digit 
Integers,TT appearing on page 90 of the April 1965 issue of the Fibonacci Quar-
terly to read: "so that it takes the five odd digits to generate the set. M 

Edward Rayher points out that there are only nine two-digit generators. 
Eliminated from the published set should be n24fT which obviously comes from 
the 21 at the end of the line preceding it in group (4), and n47TT which follows 
37 in the sequence of the same group. 

D. R. Kapreker calls these generators f ,self-numbers" in his 21-page 
pamphlet, "The Mathematics of the New Self Numbers, " personally published 
by him inDevlali, India in 1963. He lets the generated sequences run to infinity 
rather than reducing the numbers modulo 100 so that they lead to loops. 

C W . TRIGG 
• * * * * 


