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INTRODUCTION

The familiar Pythagorean theorem
(1) a2 + b = c?

(a,b) length of two sides of a right triangle
c 1

ength of the hypotenuse

has an infinite number of integer solutions, e, g.

a 3 5 8 7
b 4 12 15 24
c 5 13 17 25

as Diophantus of Alexandria first demonstrated and tabuiated in the third cen-
tury [1]. Many of his tabulated entries, however, produce right triangles
which differ only in scale, representing redundant or reducible solutions, This
paper presents a method for generating only irreducible-integer (''fundamental')
solutions and studies some of their common properties:

1. The hypotenuse length is always an odd number,

2. One side is always odd, one side always even,

3. The even length is always divisible by four,

4, Hypotenuse t even side is always a peffect square,

Hypotenuse + odd side is always twice a perfect square,
5, Taking m and n as any distinctly odd and even numbers with no

common factor (m n), the complex quantity,

(m + jn)? = (one leg) + j (other leg)

and its modulus
185
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| m + jn|*> = (hypotenuse)

always generate a fundamental triangle and conversely., Equivalently,

the acute angles always correspond to

arg, (m + jm)? = 2tan | (%l) = 2tan ' p

and its complement: p = twice or half of some rational number <1,
6. Any line segment of length (2k +1) or 4k, k = 1,2,3,°-+, consti-
tutes a leg of at least one fundamental triangle; more in many cases,
7. The necessarily non-integer nature of solutions to a + pt = cn,
n > 2, (Fermat's Last Theorem) can be proved for n = 4k, k =1,
2,383,000, '
8. In a rectangular parallelopiped of integer dimensions and integer
length diagonal, two of the dimensions must be even while the third

dimension and the diagonal itself must be odd.,
GENERATION OF FUNDAMENTAL SOLUTIONS

One method for generating fundamental solutions rewrites (1) as

2 b = e +a)(c - a)

suggesting the special case: (c +a) = m?, (c - a) = n% More generally we
might set (¢ +a) = rym?, (¢ -a) = ryn?, where neither integer r contains
any repeated factors, A necessary condition for an integer solution then is
ry = 1, or equivalently, a = r(m?-n?/2, b = rmn, c¢ = r(m?+n?/2,

Substitutions r' = (r/2), m' = (m+n) and n' = (m -n) will yield
equivalent expressions, except for (trivially) interchanging the roles of a and
b. This equivalence helps to explain why choices of m (or m') and n (or
n') as

(i) both odd numbers

(il) both even numbers

(iii) one odd and one even
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are all redundant [2], We will choose (iii) for the most compact expressions:
3) a=m?-n? b=2mn c = m?+n?

subject to further condition that m and n possess no common factors, None
of the b-factors can then divide evenly into either a or c¢; the solution is ir-
reducible, Appropriate choices of m and n will thus generate all fundamen-
tal solutions,

INITIAL PROPERTIES OF FUNDAMENTAL TRIANGLES

Properties 1 through 5 follow directly from Equation (3) and condition
(iii). Thus,

Property 1 ¢ = hypotenuse = m? + n? = (odd) + (even) = odd

Property 2 a=m? - n2 = (odd)

Property 2 and 3 b = 2mn = 2 (even) = 4 %’ﬂ = 4 (integer)
Property4 c+b = (mzn?% cta = (2m% 2n?)
Property 5 (m + jn)?2 = (m? - n?) + j2mn = a + jb

FUNDAMENTAL TRIANGLES WITH A COMMON SIDE

In Property 6, a chosen value of
(4) b = 2mn = 4k((k = 1,2,3,°°)

will provide one or more permissible combinations of m and n, leading to as
many fundamental triangles with the same even side, Resolution of a = m? -
n? into any distinct odd factors (m +mn) (m - n) will likewise provide choices
of
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5) o - mtm?+ (m-n?

_ (m+n)? - (m - n)?
(6) b = 5

yielding fundamental triangles with the same odd side.
Regarding the number of such triangles, we may express

o

cee rN ,

a
) mn = 5 = 2°. ;. 2.

[oF
where the r?i represent distinct odd prime factors raised to an integer power,
Since m and n contain no common multiple, r?i can be associated with
either m or n but not both (e, g., a; = 5, m~ r%, n~ r% is forbidden),
giving two possible choices, The N + 1 factors (counting 2%) will likewise

+
give ZN !

possible ways of expressing m and n, except that m mustalways
identify as thelarger of the two, Half of these ways, however, have simply ex-
changed the roles of m and n with the otherhalf, We therefore obtain ZNH/ 2
= ZN permissible paris of m and n, and ZN fundamental triangles withthe
same even-length side,

Again,

B
(8) a=sh. & s =C. D

where the Si are odd, prime factors, We can similarly associate each Sii
with either C (odd) or D (odd) in a total of ZN different ways, Should we
specify C = (m +n) as the larger and D = (m - n) as the smaller, the num-
ber of distinct possibilities reduces to (ZN)/ 2 = NNt [3] and indicates as
many fundamental triangles with the same odd side. Since a-values (odd
numbers) occur twice as frequently as b-values (multiples of 4) in an ordered
sequence of integers, they may quite reasonably exhibit only half the potency

of b-values in generating fundamental triangles,
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ORDERED TABULATIONS OF FUNDAMENTAT TRIANGLES

The a- and b-schemes in fact provide two means for ordered tabula-

tions, viz:
b |4 s 12 16 20 o 60 o
mn| 2 | 4 6 8 10 o 30 o
m | 2| 4| 6, 3| 8| 10 : s | | 30 I 15 D10, 6|
n | 1] 1 1:\2 1 1;2 o 1iI o) 3, 5|
a |3|15]35, 5|63 | 99,21 | se9 ! 221 ' 91 : u |
¢ | 5|17 |37, 1365|101 | 29 | o | 229 100, 61 |
Table 1. IHlustration of b-Scheme of Tabulation
a st s | 7] 9| 11| 13 5| 105
m+n | 3| 5| 7] 9] 11| 13| 15 : s ] 105 L35 : 21 : 15
m-n | 1| 1| 1{1] 1] 1| 1" s | 1, 3! 5, 7
b 4| 12 | 24)40| 60 | 84 | 112, 8 5512 | 608 | 208 , 88
c 5| 13 | 25 41| 61 | 85 | 113 i | [ss13 | 617 | 233 | 137

Table II. ITllustration of a-Scheme of Tabulation

These tables help to illustrate the self-evident conclusions:

1) For any specified even side, there is always a fundamental triangle
whose hypotenuse and odd side differ by 2 (corresponds to n = 1},

2) For any specified odd side there is always a fundamental triangle
whose hypotenuse and even side differ by 1 (corresponds to m -n

= 1).

FERMAT'S THEOREM

2
The preceding analysis has applied the identity (m? - n? + (2mmn)? =

2
(m? +n?) which might be rewritten as
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(9) dt + et = f ,

where d =Vm? - n?, e =+/2mm and f =V/m? +n? corresponds to line seg-

ments as in Fig. 1.

f
n e
m
m or 2n
d 2

m n

Figure 1. Graphic Constructions Expressing d* + et = f4

Thus,

(10) d =\/f2 - 2n? =\/(f + nV2)(f - nV2)

cannot assume integer values unless f contains a factor of V2, i.e., (9) has

no integer solutions. Similarly,
(11) @)k + ek = (ks k= 1,2,3,...

finds no integer solutions since we may set d' =\13‘ d, e' =\k/ e and f' =

VA

RECTANGULAR PARALLELOPIPEDS

Some of these results apply directly to integer-sided rectangular paral-

lelopipeds; we shall refer to Fig. 2. According to this figure,

(12) a2 + b2 = a2 -¢?=(d+c)d - c)
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Figure 2. Diagonally Cut Half of Rectangular Parallelopiped

Suggesting that d+c - (a2 +b?)/r and d -c = r = some factor of a2+ b2,
Thus,

(13) (2d - r)r = (2c + r)r = a’ + b?

where non-fractional values of ¢ impose the condition

r < Va2 +p2+1 -1,

max

Even values of r imply even values of a and b, while odd r demand
mixed odd/even values for a and b. At least one dimension in any pair of
dimensions must therefore be even; i. e. , two of the three dimensions must be

even. The third dimension must be odd (to prevent reducibility) while
(14) d? = a2 + b% + ¢% = (even)? + (even)? + (odd)?2

further requires an odd-length diagonal,

One particular scheme for generating parallelopipeds might thus begin
by choosing the odd-length dimension and one of the even ones; call them
and b. Evaluate a2 +Db? (now always odd) and determine the upper bound on
T hax Below this bound, suitable choices of r must qualify as factors of a?
+b% and are now, likewise, always odd [4].. These choices give values of c

and d via Eq. (13) and suggest the following tabulation.
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Quantity Comments Sample Solutions
a One Odd, 1 1 2 5
One Even
b 2 8 9 10
a? + b2 Always Odd 5 65 85 125
r_ < 1 7 8 10
max
i |
r Always 0dd 15, 1| 5, 1| 5, 1
|
c = (a2 +b? - r9)/2r 2|4 32] 6,42 10, 62
! ]
d = (a% + b2 + r2)/2r 39,33 |11,43] 15 63

Table III, Scheme and Solutions for Fundamental Rectangular
Parallelopipeds

CONCLUSION

Properties 2, 3, and 8 are the most useful since they lead directly to

‘the generation and tabulation of fundamental solutions, The remaining proper-

ties have no such direct application but may represent areas of further study.

1.
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G. Gamow, One, Two, Three- - - Infinity, Viking Press, New York, 1958,
p. 30, presents these solutions as a = r+V2rs, b =a+V2rs, ¢ =r+
s +\V2rs.

Choice (i) requires r = 1 for a fundamental solution. Choice (ii), inprime

notation, requires r' = 1/2 and contradicts the assumption of integral r.
Expressed in terms of unprimed quantities moreover it becomes indistin-
guishable from (i), Choice (iii) similarly requires r = 2. In terms of
primed quantities, it also reduces to the form of (i).

The original 2N ways can be grouped into pairs, indistinguishable except
thatone chooses C as thelarger while the other chooses C as the smaller
of the two factors. Specifying C > D validates only one member from
each pair, having the ZN original possibilities.

An alternative scheme might have started withboth even-length dimensions,
allowing both odd and even values for r.

* Kk ok kK



