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1. Introduction. As is well known, a number of remarkable and inter-
esting relationships exist between the golden ratio of the Greeks and the num-
bers in the Fibonacci sequence, Binet's formula is one example of such a

relationship and another is the familiar equation

n+1

@ =1+———5—= lim
1+ ——— n

where o = (1 + \/E)/Z and Fn denotes the nth Fibonacci number. In this
paper, we derive other interesting relationships involving the Fibonacci num-
bers and the simple continued fraction expansions of multiples of the golden
ratio, We also extend these results to obtain more general theorems about a
certain class of quadratic surds.

Specifically we establish necessary and sufficient conditions for integral
multiples of the golden ratio to be of period one, obtain sufficient conditions
for these multiples to be of period two and establish some partial converses
for those of period two. We then generalize by replacing the golden ratio by
arbitrary simple continued fractions of period one and then by arbitrary sim-
ple continued fractions of period two. Some results are exactly analogous
while others are only partial. Some curious side results are also established.

2. Resulis involving the golden ratio., We hegin by considering the fol-

lowing table of simple continued fraction expansions of positive integral multi-
ples of «. Of course, these expansions are periodic and the repeating part of
the expansion is indicated by dots in the style of Hardy and Wright [1].
Careful scrutiny of the table reveals a variety of patterns. Some of the
patterns are only apparent but others, as indicated by the theorems following
the table are generally true.
Note that small Latin letters will always be used to denote positive inte-

gers. Also, Ln will always denote the nth Lucas number,
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n Expansion of no
1 [, 1]
2 [3, 4]
3 |4, 1, 5]
4 (6, 2, 8]
5 (8, 11]
6 [9, 1, 2, 2, 2, 1, 12]
7 [11, 3, 15]
8 [12, 1, 16]
9 (14, 1, 1, 3, 1, 1, 19]
10 [16, 5, 1, 1, 5, 22]
11 [17, 1, 3, 1, 23]
12 [19, 2, 2, 2, 26]
13 [21, 29]
14 [22,1,1,1,7,6,7, 1,1, 1, 30]
15 [24, 3, 1, 2, 3, 2, 1, 3, 33]
16 (25, 1, 7, 1, 34]
17 (27, 1, 1, 37]
18 (29, 8, 40 ]
19 (30, 1, 2, 1,7, 1, 2, 1, 41]
20 [32, 2,1, 3,2,1,1,10,1,1, 2, 3,1, 2, 44]
21 [33, 1, 45]
22 [35, 1,1, 2, 11, 1, 8, 1, 11, 2, 1, 1, 48]
29 [46, 1, 11, 1, 63]
34 [55, 76]
36 (58, 4, 80]
47 [76, 21, 105]
55 (88, 1, 121]
89 [144, 199]

Theorem 1. Let n be a positive integer. Then no = [a,b] if and only

if n = Fompoyp @ = Foyy, and b = Loyp-y for some m = 1,

Theorem 2. Let n be a positive integer, Then no = [a,'l,é] if and

only if n = Fym, a = Fyptqy, and ¢ = Ly, -2 for some m = ],
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Theorem 3. If we admit the expansions o = [2,1,-1,1,3] and 4o =

l6,1,0, 1,23], then for every integer r = 1, we have

a) Lyre = [Lyrty, For, 5Fsr ],
and
b) Lyp-i@ = [Lop - 1, 1, Fopry - 2, 1, 5Fppy - 2] .

Unlike Theorems 1 and 2, the converse of Theorem 3 is not true as is
easily seen by considering the expansions of 4w, 16w, and 36a. The following
theorem, however, provides a partial converse of the first assertion of
Theorem 3.

Theorem 4, Let n be a positive integer. Then no = [a,]'b,é] if and
only if nb = Fymy, ab = Fopyeq -1, and be = Lgy, -2 for some m = 1,

Before proving these results we derive two lemmas which incidentally
provide unusual characterizations of the Fibonacci and Lucas numbers,

Lemma 1. The Pell equation x? - 5y% = -4 is solvable in positive inte-
gersif and only if x = Lyy 4y and y = Fy_y for n = 1,

Proof, Since x = y = 1 is the least positive solution of the given equa-

tion, it is well known [2] that every positive solution is given by

X + yNb
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for n = 1, On the other hand, by Binet's formula,
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and
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Combining these three results we have that all positive integral solutions to
x% - 5y2 = -4 are givenby x = Lgp; and y = Fyy_; for n= 1 as claimed.
Lemma 2. The Pell equation x? - 5y2 = 4 is solvable in positive inte-
gers if and only if x = Ly, and y = Fy, for n= 1,
Proof. As in the proof of Lemma 1, it is easy to show that

1 =k —
——2k—1 1+ ~NB) = Lk+~/5Fk, k=0

where we take L, = 2. Therefore, since x = 3, y = 1 is the least positive
integral solution of the given equation, every solution in positive integers is

given by
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where the last equality is a result of Lucas,|3, p. 191]. Thus, all solutions
in positive integers are givenby x = Ly, v = Fop for n= 1 as claimed.

We note in passing that Lucas |3, p. 199] observes that L%l - 5Ffl = 4
and that Wasteels [4] proved that if 5x* + 4 is the square of an integer then
x 1is a Fibonacci number,

Proof of Theorem 1, By direct calculation we obtain

2a - b + VbZ + 4

[a,b] = :
Therefore, no = [a,i)] if and only if
(1) n=21-b and a5 = b2+ 4

The second of these equations is equivalent to
b? - 5n = -4
and, by Lemma 1, this is solvable in positive integers if and only if n = Fy,, 4

and b = Lyy-y. Finally, since Fp, + Ly, = 2Fy for every m, it follows
from (1) that

n+b Fem-1* Lom-y
a = 5 = 5 = FZm

and the proof is complete,

The proofs of Theorems 2 and 4, which depend on Lemma 2, are exactly
analogous to the proof of Theorem 1 and will therefore be omitted. Of course,
Theorem 2 is the special case of Theorem 4 with b = 1.

Proof of Theorem 3. Part (a) follows directly from Theorem 4 with

n = Ly, @ = Lopyy, b= Fyp, ¢ =5Fy, and m = 2r since it is easily
shown that LypFor = Fyp, LopsFor = Fyrpq -1, and 5F5p = Ly - 2.
To obtain Part (b) we define the sequence Bi for c¢' = 1 by thefollowing

series of calculations which depend on Lemma 1: Let
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Then

and
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By

1]

= Lopqa - Lgp + 1

V5—L2r—1 - 5F2r—1
= 5 + 1
= ~10 + 1

N5 Lyp_q + 5Fap_y
1+ 10

\[5—L2r—1 + 5F21‘—1 - 10
L+ By,
NE Logp_y + 5Fgp g - 10

10
'\/g L2r__1 = 5F2r_1 + 10

For—y - 2+ 10

Fop—1 - 2 % B3

10
N5 Ly, g = 5Fgp_q + 10

10(N5 Lop—y + 5Fr—y)

-20 + 10(N5 Lop_q + 5Fgp_y)

2
NB Lypy + 5Fpp—y - 2

1+

1+ B4,

NB Lop-y + 5Fpr-q - 2
2

N5 Lygp_y = 5Fpr
SFZI‘—l -2 + + 1

2
5Fyr_y - 2 + B5 -
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Since S5 = f;, the sequence now repeats and it follows that

Loy = Loy ~ 1 4 834

1
=L2r'1+1+52
1
=L2r—l+ 1
1+

11

[Lop-y = 1, 1, Fopy = 2, 1, 5Fppy - 2]

as claimed.

3. More general results. Since Fp.,/F, is a convergent in the simple

continued fraction expansion of (1 + N5)/2, the results of the preceding sec—
tion suggest that one ask if there is any iuteresting connection between the
simple continued fraction expansion of aquadratic surd £ and the simple con-
tinued fraction expansion of qn§ where pn/qn is the nth convergent to §.
The following theorems, which generalize those of Section_z, answer this ques-
tion in the affirmative for surds of the form £ = [a, b] or §{ = |a, io, c]

Theorem 5. Let ¢ = [a,l'oq, let n be a positive integer, let plquv
denote the kth convergent to ¢ and let tk = qk_1+qk+1. Then né = [r,:'s]
if and only if n = dym-9, T = Pym-3, and s = tyy_y for some integer m =
1.

Theorem 6. Let §,n,pk/qk and t, be as in Theorem 5. Then né =
{u,v,w] if and only if v = dym-y, VU = Dyyyy -1, and VW = tyy 4 - 2
for some integer m = 1.

Theorem 7, Let & = [a,l‘o,b], let pk/qk be the kth convergent to
£, let tk = T and let S = P, + Py Then, for every integer

r = 1, we have

o C ¢
a) Qort = [pzr, tors Etzr] ;

b) Ur-15 = Ibop-1 - 1, 1, ty - 2],
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c) top_i§ = [SZr—1a qz.r—p (02 + %) q2r]’
and
d) tork = [Sor - 1, 1, Gy - 2, 1, (bc + 4)dyp - 2]
Proof of Theorem 5. The convergents to £ = [a,io] are given by the

difference equations

Gy = Py F
Py = PPy * Py

n n-

with the initial conditions ¢y = 1, q; = b, p, = a, and p; = ab+ 1. These

are easily solved to obtain

ST S SN TR
4G = T*-i 2 2 ’
Nb* + 4

(2) -

where

¢ - b+ b2+ 4 n+ b - Nb?+ 4 \"
n-1 2 2

and it is easily shown by induction that tn =dy Ay for n= 0.
Moreover, since [a,b] = (2a -b + NDb? + 4)/2, it follows that né =
[r,s] if and only if the equations

n2a - b) = 2r - s ,
(3)

b2 + 4 =Ve? + 4

simultaneously hold. The second of these equations is equivalent to
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s?2 - n?(b% + 4) = -4

and s = b, n = 1 is clearlythe minimal positive solution. Therefore, every

solution (s,n) in positive integers is given by the equation

———\ 2m-1
N el 2<§+_~_/29_+_é) Cme 1o

and it is easily shown by expanding the powers here and in (2) that this reduces

to

s+ nNb? + 4 = tyy o + QumopNDE F 4 .

Also, from the second equation in (2), we have
_n(2a - b) + s
- 2

(22 - b)dam-9 + tom-g
2

Qom-3 + Qem-1 ~ Plom-2
aom-2 + 5

= a0ym-2 * dom-3
= Pam-~2
since it is easily proved by induction that aq, + %, =Py for all n. This

completes the proof.

Proof of Theorem 6. Note in particulér that the preceding argument

essentially shows that

'\162+4, k=1 .

=t

(b + b+ 2)E
@ B =

9 k-1 + qk—i

Also, it is easily shown by induction that
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m

5 \ (m bk _

/4 \k qk-l = Qom-1 )
=0

mi
N m k
J(k_ 1>b qk—i = lezm ’
k=0
m
m) . k
AZ<k)btk1 = %m-1 >
k=0

and
m
556 - o
k=0
Now, as in the preceding proof, one can show that n¢ = [u,iz,\ﬁv] if and
only if vw + 2 and vn are simultaneously positive integral solutions of the
Pell equation

(6) (vw + 2)2 - (vn)2(b? + 4) =

and of n(2a -b) = 2u - w, Also, the general solution of (6) is given by

b+ 2 + bab? + 4
2

(vw + 2) + vanNb? + 4 = 2

Using the equalities in (4) and (5) this may be simplified to give

m
(b2 + 2) + bb? + 4 _
5 =

2;2+b(b+ b2 + 4)

m
Z() b + Vb2+4)kbk
Tk
k=0
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m
20 (1) s w T

=0

m

il

k=0

1l

tam-1 + Nb? + 4 dypy_y

Thus, vw + 2 = t3,, 4, V0 = Gy, and

vn(2a - b) + vw

vu = 5

(2a - b)Jagm-1 * tym-1 - 2
2

= Pppm-1 - 1

as in the preceding proof.

Proof of Theorem 7. For

2 (III;) Yoot mg (?2) b,

¢ = [abo] = a + 2he t VDRI dhe

2b
define
A =¢-a, B=A+c¢, C = bA/c,
and
D = bB/c =C=#b.
The following identities are useful:

2
a) Bk = 1+ cdgk+idsk-1/P

123
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b)

c)

g

h)

i)

i)

k)

m)

n)

0)

A LIMITED ARITHMETIC

Bic+1 = blagktadak + 1/c
P2k = adk + cdgk-1/b
Pak+1 = aQgk+1 * d2k
(kB - caok+1/b)(AggA + capk+1/b) = ¢/b

(kD - dok+1)(akC + dok+1) = b/c

(@ok+1B - dak+p + D agk+1A + dak+g - 1) = dgk+p + ok - 2 = toktg - 2

tar = btap_q + tar_g
tar+1 = clor + tor—y
Sok = atgk + tak-1
Sok+1 = atgk+y *+ ctak/b
ctjic - bacritak-1 = Cacakrs — bthsr = -bloc + 4)
(tar_1B - ctyp/D)typr_1A + ctyp/b) = clbc + 4)/b

(tZI‘—lD - 1t2r)(t2r_1c + tZI‘) = b(bC + 4:)/0

These are proved in a straightforward manner.

. To prove 7a, we have by identity c) and the definition of B that

Qoké = doka + dokA

d2ka + Clak-1/b - cak-1/b + dakA

pok + 1/B4

[April

Pok + Bdsk - cqok+i/b , definition of B,
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Using identity e) and the definitions of C, D and ty, we have

fl

By = blagkhA + cagk+1/b)/c

AkC + dok+1 » definition of C,

Qok-+1 T Qok-1 T PkC = dok—1
= tok + AkD - dok+1

tok + 1/B2

Using identity f) and the definitions of C and tyk, we have

By = clqkC + dak+1)/b
= QokA + cdgk+1/b
= cldgk+1 + Qok-1)/b + dakA - cok-1/b
= Otzk/b + 1/61 .
We therefore have
aké = [pao to chu/b]

proving 7a.
The proof of 7b is similar and uses identity g) at akey pointinthe argu-
ment. The argument will not be presented here.

To prove 7c, we note that

tar-1€ = tor_12 + tyr4A
= Spr_1 * tar—1A - Ctyr_o/b
= Sop_1 + (t2]j‘_.1B - CtZI‘/b)

| s + clbe + 4)/b
i 2r-1 tzr_iA + Ctz‘r/b

1
= Sapr-1 +7§—1 s
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B

(btyr—4A + ctyp)/clbc + 4)

= dop-1 + (typ_1A + ctyp - clbe + 4)qgp_g)/clbec + 4)

= Qor-1 + (btyr_1A + cqar+1 - cloc + 3)qap-y)/cloc + 4)

= qor-1 + (btypA + chayy - clbc + 2)qyp_q) /clbc + 4)

= Qar—1 * (tyr_1A + cbagy - (be + 2M{dar - Qar—))/clbe + 4)
= dap-1 + (tyr_1A - 2qpr + (be + 2)qpp_y)/clbe + 4)

= ggr-1 + (btar_4A - 2(cayr_g + dor-p) + (bc + 2)apr_y)/clbe + 4)
= dar-1 + (btpr-1A - 2cqgp_y + begyr_g)/clbe + 4)

= dor-1 + (btyr—1A - cldar-1 + gar-3))/cloc '+ 4)

= dap-1 T Gtyr_1A - cltyr_y))/clbe + 4)

= dop-1 * (tr_1C - typ_p)/(bc + 4)

= Qgp-1 + (tar-1D - tyr)/(oc + 4)

= g + blbc + 4)/c
-1 e+ Dltr_iC * tor)

1
= dor-1 * tZI‘—lA + Ctzr/b

1
= Qop-t + B—l = Qor-1 T
2 Bi({oc? + 4c)/b)

and

By = (bc® + 40)By/b = ((bc? + 4c)/b)(Qpr_q + _ﬁ.-“;.)

= ((bc? + 4c)/b)qyr_1 + 3-11'

‘Hence we obtain

tok-1€ = [Ssk-1, Gpk—1» ((bc? + 4¢)/b)dzk—1 ]

The proof of part d) is similar and the argument is omitted.
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The following theorem, which is stated without proof, is a partial con-
verse of Theorem 7.

Theorem 8. Let ¢, Prs G Sy and ’ck be as in Theorem 7 and let n,
u, and v be positive integers.

a) If v is such that b divides cv and né¢ = [u,iz,c%z/b], then n = qgp»
u = tyy, and v = pyr for some positive integer r.

b) I n¢ = [u,'l,x.f_], then n = qyr_1, U =DPyp_g- 1, and v = typ - 2 for
some positive integer r.

Remark., When a simple continued fraction has a partial quotient 1 the
corresponding approximation of the convergent tothe number in questionis not
as good as when other integers are partial quotients. The 1's canbe eliminated
as all but thefirst partial quotient if it is permitted to have -1's as numerators.
The corresponding convergents would then be better approximations than the
original ones.

Setting about to purge the 1's from the expressions obtained in Theorems
2, 3b, 7b and 7d we ran across an interesting pattern that allowed us to sim-
plify the notation. Let us define the symbol -[ag, aj, a5°**] to be the

expression

Although this expression might not always be meaningful,it is in the cases we
consider here.

With the new notation we are able to restate a few of the theorems as

Theorem 9:
_ k+1 :

2) re = (0 r,, i |-
b) o = )L, ¥, 5F ]

Ly e Tk 2Pk ]

_ o _ k o

c) ¥ ¢= [a,b] then q = D pe b7
d) If ¢ = [a,io,é] and k odd, then qk§ = —ipk', 1':k1
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e 4 o .
e) If & ta,b,c. and k even, then tkn,“ Lsk’ gy (be + 4)Clk'_i-

The proofs are quite similar to the original proofs and are omitted.
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