FIBONACCI AND LUCAS NUMBERS
 IN THE SEQUENCE OF GOLDEN NUMBERS

ROBERT PRUITT
San Jose State College, San Jose, California

Beginning with the golden rectangle with base 2 and altitude $\sqrt{5}-1$, one may proceed to construct a sequence of numbers which represent altitudes (shortest sides) of the nested golden rectangles.
(1) $\quad \sqrt{5}-1,3-\sqrt{5}, 2 \sqrt{5}-4,7-3 \sqrt{5}, 5 \sqrt{5}-11,18-8 \sqrt{5}, \cdots$

We shall call this the sequence of golden numbers. These numbers, as one may suspect, are closely related to Fibonacci numbers, as is suggested by Theorem 2 below. First, however, we need to observe that the $\mathrm{n}^{\text {th }}$ golden number may be expressed by the following recursive formula:

Theorem 1. If g_{n} denotes the $\mathrm{n}^{\text {th }}$ golden number, then $\mathrm{g}_{\mathrm{n}}=1 / 2 \mathrm{~g}_{1}$. $\mathrm{g}_{\mathrm{n}-1}$.

Proof. This follows immediately from the method of finding the altitude of a golden rectangle given its base (details left for the reader).

As an immediate consequence we have a corollary:

$$
g_{n}=\frac{(\sqrt{5}-1)^{\mathrm{n}}}{2^{\mathrm{n}-1}}
$$

We next observe after considering the first few golden numbers that

$$
\text { Theorem 2. } \quad g_{n}=g_{n-2}-g_{n-1}
$$

Proof. Using the form for g_{n} given in the Corollary to Theorem 1, we have

$$
\begin{aligned}
\mathrm{g}_{\mathrm{n}-2}-\mathrm{g}_{\mathrm{n}-1} & =\frac{(\sqrt{5}-1)^{\mathrm{n}-2}}{2^{\mathrm{n}-3}}-\frac{(\sqrt{5}-1)^{\mathrm{n}-1}}{2^{\mathrm{n}-2}} \\
& =\frac{2^{2} \cdot(\sqrt{5}-1)^{\mathrm{n}-2}}{2^{\mathrm{n}-1}}-\frac{2 \cdot(\sqrt{5}-1)^{\mathrm{n}-1}}{2^{\mathrm{n}-1}}=\frac{2(\sqrt{5}-1)^{\mathrm{n}-2}[2-\sqrt{5}+1]}{2^{\mathrm{n}-1}} \\
& =\frac{2(\sqrt{5}-1)^{\mathrm{n}-2} \cdot(3-\sqrt{5})}{2^{\mathrm{n}-1}}=\frac{2(\sqrt{5}-1)^{\mathrm{n}-2} \cdot \frac{(\sqrt{5}-1)^{2}}{2}}{2^{\mathrm{n}-1}}=\frac{(\sqrt{5}-1)^{\mathrm{n}}}{2^{\mathrm{n}-1}} \\
& =g_{\mathrm{n}} \cdot
\end{aligned}
$$

Another rather interesting observation is that the coefficients of radical 5 appear to be the sequence of Fibonacci numbers with alternating signs. We may formalize the conjecture after observing that as a result of a multiplication by $(\sqrt{5}-1) / 2$, the signs of each term of the golden numbers alternate and the $\mathrm{n}^{\text {th }}$ golden number may be expressed in the form

$$
\mathrm{g}_{\mathrm{n}}=(-1)^{\mathrm{n}-1} \mathrm{a}_{\mathrm{n}} \cdot \sqrt{5}-\mathrm{b}_{\mathrm{n}}
$$

where a_{n} and b_{n} are positive integers.
Theorem 3. If

$$
\mathrm{g}_{\mathrm{n}}=(-1)^{\mathrm{n}-1}\left[\mathrm{a}_{\mathrm{n}} \cdot \sqrt{5}-\mathrm{b}_{\mathrm{n}}\right]
$$

represents the $n^{\text {th }}$ golden number, then a_{n} is the $n^{\text {th }}$ Fibonacci number, ${ }^{F}{ }_{n}$.

Proof.

$$
\begin{aligned}
g_{n+1} & =g_{n} \cdot \frac{\sqrt{5}-1}{2}=\frac{(-1)^{n-1}}{2}\left[5 a_{n}-\sqrt{5} b_{n}-\sqrt{5} a_{n}+b_{n}\right] \\
& =(-1)^{n}\left[\frac{\left(a_{n}+b_{n}\right)}{2} \sqrt{5}-\frac{\left(5 a_{n}+b_{n}\right)}{2}\right] \\
& \therefore a_{n+1}=\frac{a_{n}+b_{n}}{2} \text { and } b_{n+1}=\frac{5 a_{n}+b_{n}}{2}
\end{aligned}
$$

Then

$$
a_{n-1}+a_{n}=a_{n-1}+\frac{a_{n-1}+b_{n-1}}{2}=\frac{3 a_{n-1}+b_{n-1}}{2}
$$

and

$$
\begin{aligned}
a_{n+1} & =\frac{a_{n}+b_{n}}{2}=\frac{\frac{a_{n-1}+b_{n-1}}{2}+\frac{5 a_{n-1}+b_{n-1}}{2}}{2}=\frac{3 a_{n-1}+b_{n-1}}{2} \\
& =a_{n-1}+a_{n} \rightarrow a_{n}=F_{n} .
\end{aligned}
$$

Yet another observation may be made from the sequence (1). It is stated:

Theorem 4. If g_{n} and g_{n+1} are any two successive golden numbers, then $\mathrm{F}_{\mathrm{n}+1} \cdot \mathrm{~g}_{\mathrm{n}}+\mathrm{F}_{\mathrm{n}} \cdot \mathrm{g}_{\mathrm{n}+1}=2$.

Proof. Using the representation for F_{n+1} developed in the proof of Theorem 3, we write

$$
\mathrm{F}_{\mathrm{n}+1}=\frac{\mathrm{F}_{\mathrm{n}}+\mathrm{b}_{\mathrm{n}}}{2} \rightarrow \mathrm{~b}_{\mathrm{n}}=2 \mathrm{~F}_{\mathrm{n}+1}-\mathrm{F}_{\mathrm{n}}
$$

Therefore, we may express g_{n} and g_{n+1} in terms of Fibonacci numbers only:

$$
\mathrm{g}_{\mathrm{n}}=(-1)^{\mathrm{n}-1}\left(\mathrm{~F}_{\mathrm{n}} \sqrt{5}+\mathrm{F}_{\mathrm{n}}-2 \mathrm{~F}_{\mathrm{n}+1}\right)
$$

and

$$
\left.\mathrm{g}_{\mathrm{n}+1}=(-1)^{\mathrm{n}} \mathrm{~F}_{\mathrm{n}+1} \sqrt{5}+\mathrm{F}_{\mathrm{n}+1}-2 \mathrm{~F}_{\mathrm{n}+2}\right) .
$$

Thus we obtain:

$$
\begin{aligned}
\mathrm{F}_{\mathrm{n}+1} \cdot \mathrm{~g}_{\mathrm{n}}+\mathrm{F}_{\mathrm{n}} \cdot \mathrm{~g}_{\mathrm{n}+1}= & (-1)^{\mathrm{n}-1}\left[\mathrm{~F}_{\mathrm{n}} \cdot \mathrm{~F}_{\mathrm{n}+1} \sqrt{5}+\mathrm{F}_{\mathrm{n}} \cdot \mathrm{~F}_{\mathrm{n}+1}-2 \mathrm{~F}_{\mathrm{n}+1}^{2}\right. \\
& \left.-F_{\mathrm{n}} \cdot \mathrm{~F}_{\mathrm{n}+1} \sqrt{5}-\mathrm{F}_{\mathrm{n}} \cdot \mathrm{~F}_{\mathrm{n}+1}+2 \mathrm{~F}_{\mathrm{n}} \cdot \mathrm{~F}_{\mathrm{n}+2}\right]
\end{aligned}
$$

Recalling the fundamental identity

$$
\mathrm{F}_{\mathrm{n}-1} \cdot \mathrm{~F}_{\mathrm{n}+1}=\mathrm{F}_{\mathrm{n}}^{2}+(-1)^{\mathrm{n}}, \quad \mathrm{n} \geq 2
$$

it follows that

$$
\mathrm{F}_{\mathrm{n}+1} \cdot \mathrm{~g}_{\mathrm{n}}+\mathrm{F}_{\mathrm{n}} \cdot \mathrm{~g}_{\mathrm{n}+1}=(-1)^{\mathrm{n}-1}\left[-2 \mathrm{~F}_{\mathrm{n}+1}^{2}+2\left(\mathrm{~F}_{\mathrm{n}+1}^{2}+(-1)^{\mathrm{n}+1}\right)\right]=2
$$

Recalling the representation for g_{n} used in the proof of Theorem 4,

$$
g_{\mathrm{n}}=(-1)^{\mathrm{n}-1}\left(\mathrm{~F}_{\mathrm{n}} \sqrt{5}+\mathrm{F}_{\mathrm{n}}-2 \mathrm{~F}_{\mathrm{n}+1}\right)
$$

we observe that

$$
\mathrm{F}_{\mathrm{n}}-2 \mathrm{~F}_{\mathrm{n}+1}=\mathrm{F}_{\mathrm{n}}-2\left[\mathrm{~F}_{\mathrm{n}-1}+\mathrm{F}_{\mathrm{n}}\right]=-\mathrm{F}_{\mathrm{n}}-2 \mathrm{~F}_{\mathrm{n}-1}
$$

which gives us the following alternate forms for the $\mathrm{n}^{\text {th }}$ golden number:

$$
\mathrm{g}_{\mathrm{n}}=(-1)^{\mathrm{n}-1}\left(\mathrm{~F}_{\mathrm{n}} \cdot \mathrm{~g}_{1}-2 \mathrm{~F}_{\mathrm{n}-1}\right)
$$

or

$$
\mathrm{g}_{\mathrm{n}}=(-1)^{\mathrm{n}-1}\left(\sqrt{5} \mathrm{~F}_{\mathrm{n}}-\mathrm{L}_{\mathrm{n}}\right)
$$

where L_{n} is the $n^{\text {th }}$ Lucas number. We now state our final result.
Theorem 5. $\mathrm{g}_{\mathrm{n}}=(-1)^{\mathrm{n}-1}\left(\sqrt{5} \mathrm{~F}_{\mathrm{n}}-\mathrm{L}_{\mathrm{n}}\right)$

Proof. Follows from the identity

$$
L_{n}=F_{n-1}+F_{n+1}
$$

